{ "cells": [ { "cell_type": "markdown", "metadata": { "execution": { "iopub.execute_input": "2025-07-15T17:54:57.930578Z", "iopub.status.busy": "2025-07-15T17:54:57.926902Z", "iopub.status.idle": "2025-07-15T17:54:57.937203Z", "shell.execute_reply": "2025-07-15T17:54:57.936416Z", "shell.execute_reply.started": "2025-07-15T17:54:57.930422Z" } }, "source": [ "# Visualizing Climate Change in India\n", "\n", "In this vignette, we show how to use **`varunayan`** to easily extract annual average temperature data for India and visualize the temperature changes over the period from **1941 to 2024**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Download Temperature Data for India\n", "\n", "We use `varunayan.era5ify_geojson` to download **yearly average 2m temperature data** for India, using a GeoJSON boundary file from a public URL." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2025-07-15T18:03:49.340292Z", "iopub.status.busy": "2025-07-15T18:03:49.339724Z", "iopub.status.idle": "2025-07-15T18:09:27.454747Z", "shell.execute_reply": "2025-07-15T18:09:27.454301Z", "shell.execute_reply.started": "2025-07-15T18:03:49.340264Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[0m\n", "============================================================\u001b[0m\n", "\u001b[0m\u001b[0;34mSTARTING ERA5 SINGLE LEVEL PROCESSING\u001b[0m\u001b[0m\n", "\u001b[0m============================================================\u001b[0m\n", "\u001b[0mRequest ID: temp_india_yearly\u001b[0m\n", "\u001b[0mVariables: ['2m_temperature']\u001b[0m\n", "\u001b[0mDate Range: 1941-01-01 to 2024-12-31\u001b[0m\n", "\u001b[0mFrequency: yearly\u001b[0m\n", "\u001b[0mResolution: 0.25°\u001b[0m\n", "\u001b[0mGeoJSON File: C:\\Users\\ATHARV~1\\AppData\\Local\\Temp\\temp_india_yearly_temp_geojson.json\u001b[0m\n", "\n", "\n", "--- GeoJSON Mini Map ---\n", "\n", "\u001b[0;34mMINI MAP (68.18°W to 97.40°E, 7.97°S to 35.49°N):\u001b[0m\n", "┌─────────────────────────────────────────┐\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;32m■\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "│\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m\u001b[0;31m·\u001b[0m│\n", "└─────────────────────────────────────────┘\n", " \u001b[0;32m■\u001b[0m = Inside the shape\n", " \u001b[0;31m·\u001b[0m = Outside the shape\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ad5158af79764a58904656f6fc9881ad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "11816a5996f2ad50a927f9c906761429.zip: 0%| | 0.00/2.29M [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
t2myeardev
0296.3862001941-0.202301
1296.2343441942-0.354156
2295.7434081943-0.845093
3296.3611761944-0.227325
4296.1116031945-0.476898
\n", "" ], "text/plain": [ " t2m year dev\n", "0 296.386200 1941 -0.202301\n", "1 296.234344 1942 -0.354156\n", "2 295.743408 1943 -0.845093\n", "3 296.361176 1944 -0.227325\n", "4 296.111603 1945 -0.476898" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean_t2m = df[\"t2m\"].mean()\n", "\n", "df[\"dev\"] = df[\"t2m\"] - mean_t2m\n", "\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Set Up Matplotlib Styling\n", "\n", "We configure Matplotlib to ensure consistent, high-resolution plots with a clean visual style. This setup improves readability, especially in documentation.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2025-07-15T18:11:14.127775Z", "iopub.status.busy": "2025-07-15T18:11:14.124599Z", "iopub.status.idle": "2025-07-15T18:11:14.149311Z", "shell.execute_reply": "2025-07-15T18:11:14.148632Z", "shell.execute_reply.started": "2025-07-15T18:11:14.127700Z" } }, "outputs": [], "source": [ "import matplotlib.cm as cm\n", "import matplotlib.colors as mcolors\n", "import matplotlib.pyplot as plt\n", "\n", "\n", "def setup_matplotlib():\n", " plt.rcParams[\"figure.dpi\"] = 300\n", " plt.rcParams[\"savefig.dpi\"] = 300\n", " plt.rcParams[\"font.family\"] = \"sans-serif\"\n", " plt.rcParams[\"font.sans-serif\"] = [\"Arial\"]\n", " plt.rcParams[\"axes.labelweight\"] = \"normal\"\n", "\n", " plt.rcParams[\"mathtext.fontset\"] = \"custom\"\n", " plt.rcParams[\"mathtext.rm\"] = \"Arial\"\n", " plt.rcParams[\"mathtext.it\"] = \"Arial:italic\"\n", " plt.rcParams[\"mathtext.bf\"] = \"Arial:bold\"\n", "\n", "\n", "setup_matplotlib()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4: Normalize Deviation Values\n", "\n", "We normalize the temperature deviation values so we can map them to a color scale for the bar chart.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2025-07-15T18:09:27.861841Z", "iopub.status.busy": "2025-07-15T18:09:27.861564Z", "iopub.status.idle": "2025-07-15T18:09:27.866330Z", "shell.execute_reply": "2025-07-15T18:09:27.865626Z", "shell.execute_reply.started": "2025-07-15T18:09:27.861820Z" } }, "outputs": [], "source": [ "norm = mcolors.Normalize(vmin=df[\"dev\"].min(), vmax=df[\"dev\"].max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5: Set Color Map\n", "\n", "We use the `coolwarm` color map to represent deviation: cool colors for below-average years and warm colors for above-average years." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2025-07-15T18:09:27.867291Z", "iopub.status.busy": "2025-07-15T18:09:27.867075Z", "iopub.status.idle": "2025-07-15T18:09:27.871700Z", "shell.execute_reply": "2025-07-15T18:09:27.871002Z", "shell.execute_reply.started": "2025-07-15T18:09:27.867270Z" } }, "outputs": [], "source": [ "cmap = plt.colormaps[\"coolwarm\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2025-07-15T18:09:27.872643Z", "iopub.status.busy": "2025-07-15T18:09:27.872442Z", "iopub.status.idle": "2025-07-15T18:09:27.877130Z", "shell.execute_reply": "2025-07-15T18:09:27.876702Z", "shell.execute_reply.started": "2025-07-15T18:09:27.872621Z" } }, "outputs": [], "source": [ "colors = cmap(norm(df[\"dev\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 6: Plot Temperature Deviation Over Time\n", "\n", "We create a color-coded bar plot of yearly temperature deviations. A colorbar is added to indicate the scale of deviation from the mean." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "execution": { "iopub.execute_input": "2025-07-15T18:11:17.332887Z", "iopub.status.busy": "2025-07-15T18:11:17.332419Z", "iopub.status.idle": "2025-07-15T18:11:17.586262Z", "shell.execute_reply": "2025-07-15T18:11:17.585228Z", "shell.execute_reply.started": "2025-07-15T18:11:17.332836Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAADwMAAAbqCAYAAACXSz4JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdB5wdVd0//nM3mwRCAiGQQg8JnUgCAQxNuoKABAQpIkVQsAvYHlAERWwUyyOiKCAiRaVJr9Ih1FBDIPQQWiCEkkLK/b++8/9ln713272b3b2zm/f79ZoXO3PnzJx75szcvJ7Hz3wLxWKxmAAAAAAAAAAAAAAAAAAAgNypq3UHAAAAAAAAAAAAAAAAAACA5gkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAAAAAAAAAAAAAABATgkDAwAAAACQa8OHD0+FQqHLlhNPPLHWXxmqMmvWrFp3gU704osvNnlO3XbbbbXuFj1IT51jzX2vQw89NPUkcZ3Kv2N870r/TeXfPAAAAAAAANB9CAMDAAAAAAB0U1dffXXacMMNa90NAAAAAAAAAAA6kTAwAAAAAABAN/PKK6+kvffeO+2xxx6tVoEEAAAAAAAAAKD7q691BwAAAAAAAKjcHXfckT796U+nDz/8sNZdAQAAAAAAAACgCwgDAwAAAACQa9VUPY1911xzzZJthxxySDrvvPM6oWdQG88//7wgMAAAAAAAAADAEkQYGAAAAAAAAGAJNXz48FQsFmvdDXL2ghUAAAAAAAAgX+pq3QEAAAAAAAAAAAAAAAAAAKB5wsAAAAAAAAAAAAAAAAAAAJBTwsAAAAAAAAAAAAAAAAAAAJBT9bXuAAAAAAAAdAezZs1K9957b3r11VfTG2+8kerq6tKQIUPSGmuskcaNG5f69OnT4edcuHBheuCBB9Jjjz2W3nrrrdSrV680dOjQtPHGG6fRo0e32X7q1KnpnnvuSS+//HKaN29eGjRoUFpvvfWy/vbt27fD+rnoPC+99FJ2noEDB2bn2WyzzdKAAQM6dDwefPDB9Pzzz2fXYPbs2dk1WGmlldIWW2yRnbejxfd66KGH0kcffZTWXXfdtN1226X+/ftX3N+4dtHfd955J7399ttp/vz5qV+/ftl1XGedddJGG23UKXMn7x599NHsfnrvvffSyJEjs3FdYYUVKm4/c+bMrP1rr72W3nzzzWw+x1yIY8W8i/szDyZPnpwmTpyYpk2blj1Dll122ezab7rppmnEiBEdPqZPPfVUNiZz587NxjPuw49//OMddr+///772TMp7r+Y0++++272XIrvteqqq6aPfexjac0110wdLb7ThAkT0gsvvJCNY3y3uO+32mqrtOKKK3bIOeK7xHd79tlns7/jebLKKqt06DnKxdy9//770+uvv56mT5/e8GyIZ82YMWNSdxXPuXhWP/HEE9n3qq+vT8OGDcueeXF/FgqF1J111XyMc8R8jOfk4MGD0+qrr5622WabbJ7U2qRJk9IzzzyT/a7Fs2DOnDlp6aWXbngOx/zNQz8BAAAAAACgRykCAAAAAEAP8cILLxTj//TdeDnkkEMW65g33XRTcddddy0utdRSTY69aBkwYEBx3333LT7yyCNVHXuNNdYoOc7s2bOz7XPnzi2ecsopxaFDh7Z4zpEjRxYvuOCCZo97xx13FLfbbrtioVBotu0yyyxT/M53vlOcOXNmm33873//W9J2xx13bPjs0UcfLX7yk59s8TwxZgcccEDxqaeeKi6OyZMnFw899NDiCius0OJ41NfXF7fddtviZZddVtWxY340Ps7ll1+ebZ82bVpxhx12aHKe/v37F7/5zW8W33rrrWaP99FHHxUvvPDC4h577FEcOHBgi/1tfC3233//4v33319VP9tazj333JL2sV6+T7VifCu9t3784x+X7HvGGWdk2997773sXinvS58+fYoHH3xw8cUXX2y1D//85z+zuR3Xu6XvHvPksMMOKz733HPFWoi5ccIJJxTXXHPNVq/RiBEjir/85S+LH374YdXPtbgvw6xZs4o/+clPmjxLyufskUceWXz55Zfb9X3iXjjxxBOLm222WbFXr15tzr343nH933777cW6B8O1115b3GabbVo8V/Qn5uWNN95YbK8JEyYU99xzz2Lv3r1bfLZ8+tOfLj700EMNbXbbbbdW77fWzJ8/v/inP/2p+PGPf7xYV1fX4ndbeeWVs2fN66+/Xuxsrc2xtvYdPXp0w2dxzeO3ZdCgQS1+r2HDhmX7zJgxI5f/Jqj1fHzggQeK48ePb3E+LrvsssWjjjqq4Teo/Dc6lvjeLSl/VsS9WomFCxcWr7766uLnPve54pAhQ9p8DvTt27e4++67Z/+GAgAAAAAAADpGPl6LDgAAAAAAORMVgHfddde08847p+uuuy6retdatcx//etfaezYsemLX/xiVimwvaLSXlS5Pe6447Lqmy157rnn0kEHHZS+/OUvR6qzoRLtd77znbTtttum2267rWF7uQ8//DCdeuqpWcXQqObbHueff35W4fHGG29s8TwxZhdddFFW/fakk05qcb+WRDXeb33rW2nDDTdM5513XlaBsLVKlLfffnvae++909Zbb51VbGyvGJ+47rfeemuTzz744IP0u9/9Lj355JNNPrvrrruyyqgHHnhguuqqq7LKjpWc6+KLL86uxVe/+tXse/RUCxYsSHvttVd2rzR3rWNOxbxtTlS8jYrWn/vc57J9WhunmCfnnntuWn/99dP3v//97LxdIeb3//7v/2aVcX/yk5+0OQejYnT0L+ZMVKCu1t133519xxNOOKHV+zjm7J/+9Ke0wQYbNDv2LYnnyc9+9rOsyueJJ56YVc2tZCzje8f9vvbaa6drrrkmtUdU/f7CF76QPv3pT6c777yzxf2iP3Hff/KTn0z7779/Vpm8UjHn4p6LeXXllVe22Dbm2rXXXpvdozHWiyOeEaNGjUpHHnlkVvU1xrglUU06njVrrbVWOv3001PexfMyKlHHb0tUim1JVEGOfeJ7NfeMzaOumo9f//rX0+abb56uuOKKFttGleCzzjorm0c33XRT6grxexf3ye67757++c9/ZhWt2xLVya+++urst/Szn/1s9lsHAAAAAAAALB5hYAAAAAAAKPP4449nwZfrr7++qnYR7IoQ4vbbb19RWKbciy++mLbZZpv08MMPV9zm7LPPTr/+9a+zIOKhhx6aTjvttIpDt08//XQWrqwmsBQi4BvnivBSJSJMF2HCgw8+uOK+RZA2AlURhqs2IBshybh+999/f2qPCGg2F/ZdZKWVVsquU2P//ve/s+s+efLkdp0zxuWPf/xjOvbYY1NPdcYZZ6Rbbrmlxc/79OmTxo8f32T7f//737TVVltl4clqxPz81a9+lfbcc89OD6LFHI2w4De+8Y0sfFuNCAVHYK61sSkXIdtoU02YP/oVAcV4uUFbItS43377pR/+8IdZELI9IhAa4e9q78O4bp/5zGfSBRdcUFW7Sy65JHtBQiXiRQW77LJLds9V+kyKa/zTn/40e0FBe0Tof6eddsqeu9WI6xbPhS996Uu5fVlA/FbGyzPeeuutittEaH+PPfZIDz74YMqzrpqPMX5/+MMfKp6P8bKQ6Fdr4eSOsLi/p+Gyyy5Ln//85zu0XwAAAAAAALAkqq91BwAAAAAAIE8iXBeVdWfMmFGyffnll8+CPdttt11addVVs7DcK6+8koWgolJe47BhhGaigmBU+4yAY6UitLgoRFwoFLJj7LvvvlkFxV69emUh5QgLPfrooyXtTj755CyE9fe//71hW4RVDzjggKx6YN++fbNKwn/729/SDTfcUNI2+hr9rzSoE8HFww8/vCSwFP2Mc0Ul0Ag1TZw4MZ1zzjnpscceK2kbYarhw4dngbrWRDg5gnrl4c/6+vqswmCEpqJa6dJLL51ee+21dMcdd2QB5alTpzbsG+MYYeIIVo8YMSJVKsY4AoKt2WeffVJd3f+9b3XSpElZELQ8qBdVMiN8uckmm6ShQ4dmc2HmzJlZYPjmm2/OqpGWB6qjsuxhhx2WxowZU7I9qjAvCpnGHC0P0MW4NBbjnCcRXIvv1ppPfepTabnllivZFt8z5kL5OK288srZ/RhVoCOcHfMuKtJGSDaCZ40D7rEt5ud//vOf1FkiIPqPf/yjyfaoxhvnjmqfK664YlbV87777ssq9Ub4f5GoJh73esy/VVZZpc3zRWXVRWIuRqgygtRRKTjuk7gX4tkUFbUbVzWPFxZENfFnn302LbXUUi0ePyobR8C9sTjPbrvtlt3v6667bho4cGA256dPn57d8/Ecif82FtfhK1/5SnrooYdSpX784x+XBGbjuRL3V1TmjTGMezuqFMcYRgX3xqIP8aKCeEa0Ju6xCJmXi4B13LPx/eKZG8/Nyy+/PFsWVfGNFxTEM7Uaca9HxfDyoGd8t9geYcshQ4ZkVebj2sT+MW8b7/+Xv/wlu2a///3vU97u7RizRfdozL+YyzFP4jkdv2XxuxFh6PhOjashx7yParhxT+RVV8zHCHo3VyU5nn0Ryl9nnXWy9ZgbUd17UcXtuLejf50lvlsE+stfcLDaaqtl8zaea/Esjt/imLtxv0Rl5PJ/E4WY01dddVX2rAIAAAAAAADaqQgAAAAAAD3ECy+8EMmpkuWQQw6puP1HH31UHDduXJNjHHHEEcWZM2e22G7q1KnFXXbZpUm7b3zjG62eb4011mjSJpZhw4YV77///hb7uPPOOzfbLpZ+/foVL7roohbPecYZZzRps91227W4/3//+98WzzVo0KDitdde22y7+fPnF3/+858XC4VCSZtevXoVH3zwwVbH5ZhjjmlyrrguU6ZMabHNrFmzit/73veatNt0002Lc+fObbFdzI/G+y+77LINf9fV1RV33XXX4ne+853iYYcdVtxwww2z7XfeeWfJMZq79j/60Y+yMWjN5MmTixtttFGTtkcffXSr7c4999wmbdrSnjbltt1224rvrR//+MctjuuiORff88tf/nJxs802y7b9/e9/LznGu+++WxwxYkRJu5hPxx9/fHH27NktnnvSpEkNx2y8nHbaacXOcM011zQ5V+/evYu///3viwsWLGhxvpbPvVj23Xffip5ri5bhw4cXH3744Rb79tRTTxVXW221Ju0uvvjiFtu8/PLLxT59+pTsv8IKKxTvueeeNsfi/PPPb9I2lkcffbTFNs2NQyxxnNNPP73F++jDDz8s7r333k3a7bTTTq328ZJLLmnSZuDAgdl1bEk8j9dcc80Wr0PcXy156aWXissvv3yT7/a73/2u1WfEfffdV1xrrbWanOvSSy8tdrTm5lg8+yvdd9Gy+eabF5999tkWz3PDDTcUl1tuuSbt7rrrrg7/Tu39N0FXz8crrriiSZt4XrY2H2+55Zbi4MGDW7wO8b0r/XdHPKtbctRRRzU59he/+MVWn79h2rRpxe23375J27322qvVdgAAAAAAAEDr/u+19QAAAAAAsISLyn7lFQpPOOGEdPbZZ6dll122xXZRyTMq3pVXZ41KqFEFthrLLLNMuuuuu7JKsM3p3bt3Vrk2qi02J6qTRpXGlnz729/Oql+WVwcur2rblqjgGtVtW6p4GFU1f/CDHzSpYhkVlX/0ox+1eNyojHrGGWeUbNtxxx2zaoNRZbIlUZnwl7/8ZTr99NObVJaN6qiVisqtIaoJR2Xja6+9Nv3617/OKh0/8cQTWT+22mqrhv3j+kYF1saiKmZUVo0xaE1Ue4xqtXFNG7vppptST7NoXFdYYYV05513ZlVZ41rFPRfzL65TVMZuLCpIR0XRxqI6alTCbq2qbVRkjiqbja/Tonu5vOL34orKrd///vdLtsW9eemll2YVTxtXkC6fr+eee25WvbqxaFf+nVsS90NUJN14441b3CcqBUdF7nKtzbEzzzyzSSXmqDq+xRZbtNmnqJjaXKXS9szpGJ+jjz66xfuoX79+WUXwqNTaWNyjUaW0OfH8Of7445s8c2O+RCXblsTzOOZteypuH3PMMSXzLirnxu/FN77xjVafEVF5Ns65qCps42d4tc/rrhDVzOO+jkr2LYn5/pvf/KbJ9hiPvOuM+RjPj/Lfw6ggf8MNN7Q6H3fYYYdsrKM6d2eJKvblv53xDPjzn//c6vM3RLX2K664Inve9/TfNgAAAAAAAOhKwsAAAAAAAJBSWrhwYZOQ0nbbbZdOOumkitpHwCvCQhGCaRz0Oe2006rqx3e/+91WQ68hPt90002bbN9tt93S+PHj2zzHgQceWLI+a9as9NJLL1XVzwjsthZCXORrX/ta1q/GrrvuujRlypRm94+AaIzbIssvv3z617/+lQWkKhFhrd13373VY7Ylgk4RdN5www2bfPaJT3yiJIgdfWssPjvllFMqPtcaa6yRBbsamzp1auqpIvy89dZbN9k+duzYNGDAgIb1CM9FCL+xQw45JH3xi1+s6Dz9+/dPF198cRa6XeTDDz/MgvQd6bbbbstC4o1985vfTHvssUebbWOuRFi+cWA4nkPlc6olZ511VlpxxRXb3C/m7CabbFKy7dFHH21x//Lzx/VqKfTfnOauUbVzOoKQ5c+p5sRz4dhjjy3ZNm/evPTkk0+2OP/Knz2/+tWvKnqWxUsfzj///BYD3s154YUX0uWXX16yLcLI5SHwlgwbNix7wUNjr7zySvrnP/+Z8iZCohGIbUvcxyuvvHLJtokTJ6Y866z5eMcdd2QvwGjsf/7nf9K4cePaPFf8PsWLKjpLBLTnzJnT5AUNbb3kYpF4gco+++xTsu2DDz7IQsYAAAAAAABA+wgDAwAAAABASunGG29Mzz33XMm21irYNifCjBF+bSyqcpZX2WxJhMyimmglRo8e3WTb4YcfXlHbddddt8m2aiqmRgXIww47rOL9o0puuaigWC5CQuXbYzwiEFyNqEjcWFTvvfvuuytuf+ihh6Y111yz4rE84ogjskBvVA2N4GRrlTGbs8EGGzQJTPVEu+yyS9pyyy0r2jcCkIuqCTeu7FuNVVddNX3+858v2RYVnjtS+XyNKs/HHXdcxe2j6uu2227bsD548OD05ptvttkuwtM77bRTxedpfI5FgdLmxLMqKovHsvnmm2eVPQ8++OBUjQiwlt+z1c7pI488suJ9m6tY3NIYRoXjxiKUWs25ttlmm2weVyoqX0fAe5EIy37nO99J1YgXP5Rf646ex4srwtQtVbNvLgQfVY8bq2TO11Jnzcfy50e8iCJeaFGp+M2PKvadIe7jr3zlK+lTn/pUVu04fhPLX1xR7W9bT/59AwAAAAAAgK4gDAwAAAAAACml//73v02CvVFRs1qf+cxnStZnz56dHnzwwYraRqW/CN9VormKoJUGLQcNGtRkW1RNrdSXvvSlVI2oSjpq1KiSbVF5t9w999yT5s6dW7KtvMpvpWGs8vGJCoyVKq9k3Jp99903q2B7yy23ZFVAqznPIo0r4ob58+dXVcm4u6hmXMvvx/XXX79dobfy+zEC/9OmTUsd5dZbby1Zj+DckCFDqjrGb3/723TfffdlgfwIDVZSTbzaUF5UoG6sPGjduLLpySefnIUUJ0yYkKZPn171/d7cnK70hQiLNFc9uiWrrbZaRc+zBQsWZPdpY1HttdJKp9W+dKG5eRyh7Khavbjz+N57782eE3kRIelqlF+zan5/aqEz5mMon49RgXu55Zar+FwRrD7ooINSZ4gA+plnnpmuv/769Mwzz6Tnn38+O9/iPAfa8ywAAAAAAAAA/o8wMAAAAAAApJTuuuuukvWogldfX1/1cSLQG4G6xiqtSrveeutVfJ6+ffuWrC+zzDJp6NChFbUt71+oJnwagcdqbbXVViXrDzzwQJNzll+DEBUJqxUVlssrJ1d6DSLs1Fxlx84wb9687DtHsK9c42qiPUWlYfXmrld75sGiiqVtHbu9IrxbXk28PXPnYx/7WFYpdeDAgRW3iXB0NZZddtmS9Tlz5qTO8Pbbb6eLL744q/Ld3vkcFZ2be2FBS5oL1zYXlH3yySebhKDbc73Kn2UtmTVrVnrkkUc6ZR43d+xa2mijjarav/ya5SnY3FXzMZ4fU6ZMKdlWXjG5M4LYXSHu94ceeijddNNNzX4GAAAAAAAAtE/1/ysmAAAAAADogSIo1tirr76a9tlnn3Ydq7zSZFSMrcSwYcNSe1VbTbC9IrA4cuTIqtuNGTOmScXkqVOnllRRLL8G4YgjjmhXf5999tl2XYMIVFdanbma0O/LL7+cVVaMfsX3fPTRR9PDDz+cjUNzemJl4AjKV+Ldd9/N7r/GJk6c2K77sblxrHQuVDvH2hOKbK9Kg/+LlN9Dizu/IlQb8zmWp59+OpvTEf6LCqLNHbua81UTvAy9e/euKHA4efLkZoPY7Rn7eFa//vrrre4XYxH3fmM33nhju+Zxc5VlYx5vttlmKQ8W95rlOSDaWfOxuefHqFGjquxdavLii64U1bbjdzyeAxFsjufA448/nr3s4/33319iftsAAAAAAACgqwgDAwAAAACwxItAS3nFyKhweemll3bI8d955512VxRcnABSZ1h99dXb1W7FFVdssu2NN94oCQM3N06XXXZZ6sprUG3wq7nQ16233ppuueWWLPAbQckIAsccW5L169evSTXraq5VjGEsXTkX2tJcGLS5ed4Zll566dRVooLp5Zdfnu677770xBNPZCHG6dOnd9r5yqsYt0dzgcNp06Z12P0e17mtMHBz8yyeB7HkaR7n4ZrlOSDalfOxPc+PwYMHpz59+qSPPvoodbaoYn/99ddnL2eIeRyB9PLAOwAAAAAAANB5hIEBAAAAAFjiRditM8NIcfxKRKAn76qpQNxWu/Jql50Zbqv0Giy//PLtOv78+fPTn//853TKKac0qWrblgjJzp07N/Vk1YxrZ4ccK50L7anW2hHBwc6u7l2pCCv+8Ic/TBdeeGFV83NRZfT2BuDLK6t3lA8++KDDXsBQyXOwu8zjjtBZ16wnf7fmnh8DBgxo17GiXbzApLNcfPHF6cc//nFW7boaS8JvGwAAAAAAAHQlYWAAAAAAAJZ4nV1RryeFYdobWI6wbLn6+vouuw6VHru8T5WIKqmf+cxnsqqJlYgA4tixY9P222+fdtttt3T11Venk046KfVk1Yyr+7H2brjhhrTvvvum999/v6L9o8L3FltskXbccce05557po9//OPppZdeSnnSXPX02bNnV1yxuto5ZB7TVYH+pZZaKnWGWbNmpQMPPDBdeeWVFfdjzJgxadttt0277rpreu6559Lhhx/eKX0DAAAAAACAJZEwMAAAAAAAS7yBAwc22fb9738//eIXv6hJf/Ks0nBguZkzZ7ZZBbH8OkSg8L777kt5NmfOnCwA+dhjjzVbUXLUqFFZOGr99ddP6667btpggw3SWmutlerq6hr2u+qqq1J3MG/evJrdj3/84x/TUUcdlfKkuX629/7IkzvuuCPtvvvuzQb4o/Lxpptums3rRXP6Yx/7WFpxxRVL9uvMSuvtNWjQoGavV3PXsT3Ps3LNHfe6665Lu+yyS9Xno+dZZpll2jWvmtMZz524h/fee+/sxQDNWW+99dLGG2+c/aYt+m2L/zZ+8cPzzz/f4f0CAAAAAACAJZkwMAAAAAAAS7x+/fplFe0i2LnIjBkzatqnvHrnnXfa1e6NN95osm311VdvNazXHa7BCSec0CQIHN/jxBNPTAcddFBafvnl2zxGVCethYULF5aEkvPSz+ZCm3mcC81d26gS3Z3FNT744IObBIG33HLL9NOf/jSr+Bkh90qOkzdDhw5tsu2FF17IqhpXe9+8+uqrPWYeUxsrrbRSk21vvvlm1ceJe/WDDz5IHS1ewFAeBI5/K/3gBz9IX/rSl9KwYcO65XMAAAAAAAAAujNhYAAAAAAASCmtscYaafLkyQ3rzzzzTE37k1dR6W/WrFlZKKgaEydObBLMK6+cOXz48JL1l156Kc2dOzf17ds35dGHH36YzjrrrJJtyy23XLrrrruyqqmVak8ArFqFQqHJto8++igLweepn2Hw4MFZ1cwY3zzfj+XzNTzxxBNpt912q+o4r732Wha8GzFiRLaMHDkyrbzyys1es87273//O7vvGvv0pz+d/vOf/1QUAg4LFixo90sDOtPmm2/e7HPpE5/4RFXHid+JeAa2Z37kcR5TG1FFt9wjjzyS9txzz6qOM2nSpCyg3tFVgU8//fSSbVHxNypbV3O/dNVvBgAAAAAAACwpKn/dOwAAAAAA9GBbb711yfr999+fhSWrFdWFf/Ob36TLL788Pfzww+ntt99OPUmEjh588MGq2919990l680FisqvQQSBH3jggXb0MqW//e1v6aKLLkr33HNPmjZtWhZu6mi33HJLev/990u2fe1rX6sqCBwef/zxJts6OtzVu3fvJtuqqSYZ3zPGsStE6HTcuHEl2+688852V6T+/e9/n4VZo4LzzJkzO6iXKauMWR74nDBhQtXHie8WVXcPO+ywrPLuqquuWrMKw/HcKhfPs0qDwOGpp57KAsGdOZ/bI15AEEHrxq699tqqjxOByErnR/n52juPI0QcgfHob4xv46A83VO8OGLDDTcs2XbHHXdUfZz4t0pHi9+k5557rmTb5z73uaqD813x2wYAAAAAAABLEmFgAAAAAABoJpwalR8vvvjiqo8TbY4++ui09957p7Fjx6YVV1wx/frXv049yQUXXFB1EPjZZ59tUm20XHNBo3POOadd1Yu/+MUvpgMPPDBttdVWaZVVVkm777576mgvvPBCk21bbLFFVceIKqxRDbLc/PnzW2zTnoqxAwYMaLLt9ddfr7h9hNQ6I1DdkvK5EMG09gTlIkD5zW9+M6u2OXr06KwadVS/7SjlAfYIilYbOC4PpK6zzjpZdeRaKJ/TK6ywQlp77bUXO1Dc2nzuShFobOymm25qUgm5NRFk/Otf/9rueXzbbbc1+9xoyymnnJK++tWvZlWnI0Dav3//dr8ogfzYZZddmsyPauZje36Pu+q3LQLrcX/l9VkAAAAAAAAA3ZEwMAAAAAAApJSFdyMo2NjPfvazqiowRlXgk046qcn2ffbZJ/UkF154YXrxxRcr2jcCpCeccELJtgiyNTcmq6++etpxxx1Ltv3jH/9ITzzxRFX9O/7445tUH9x3331TR4vKxeVmz55d1TG+//3vNxuyba0qdTVVWhtXKW2usnGlzjrrrNSVDj744Cbf84c//GGTirOtefPNN9MZZ5xRsq1fv35p11137bB+fuELX2jyDCg/Z1t9vPTSS0u2feYzn0m1Uj6nYx5WU8nztddea/b7t6fKemf48pe/nOrq/u//PRrfLUK2lYrvFpV5KxUvJWgs5m/M42o8+eSTTQKfUZF6s802q+o45E9UA28sfgvi96uaF23cfvvtufxti2rnUVE+r88CAAAAAAAA6I6EgQEAAAAA4P8FVI866qiSbc8880wW5qq0kt3Xv/71JiHZvfbaK6255pqpJ4mAdIQ1I/jYll/+8pfp1ltvLdkW4bsY7+Z897vfbRIciiBvhCYr8fe//71JReeVV1457bfffqmjRcXhctVUnY2w+SWXXNLsZ60Fr/r27dtkW1Sybk1UE11qqaVKtp155pnNhr7KnXvuuenqq69OXSnCjuUB7jvvvDN973vfq6h9hC4jqPvee++VbD/yyCPTMsss02H9/OQnP5k22GCDkm0///nP0z333FNR+6ha/MEHH5RUfY4+1kr5nI4w3w033FBR2xkzZmQVmN99993FDhJ25rw69NBDm1Rm/ta3vtVm5et//vOf6X/+53+qrhw9bty4Ji9T+N3vflfxszYqnJeH4KP6PN1fPJej2nP5CzDOO++8NttOnz49m8udUbG9ud+28pcWtPU7/Ktf/arZz/LyLAAAAAAAAIDuSBgYAAAAAAD+nwgarrHGGk0CYFFJ9KWXXmqxXYT5IjT817/+tWR7nz590sknn5x6oghmxri8+uqrzX4eId7jjjuuSXhu6NCh6Qc/+EGLx/3Upz6V9thjj5JtTz/9dBaoiyqILYlA1P/+7/82qcQZfvKTn6Sll146dbTtt98+C2+Wz5cI2bZm2rRp6YADDmi1QmhzFRUXWX755ZutHtqaqIhbXnU5wu4Rkm4pEDxv3rx0yimnpCOOOCLVQoSll1tuuZJtp59+ehaOjCBcS956662suu6NN97YZNyqDXNW4tRTTy2ZBzH3Yx63Fp6LIH2Ma3kYPLattdZaqVZ22GGHZqvpxlxpzc0335xVqn3ggQeqns9d7de//nUaMmRIybYI58b9fP/99zfZ/+WXX87GYP/998/uiWpFNeHevXuXbIvw8THHHFMSBC/3wgsvZNfjscceK9k+cuTIJi+uoPuK0Gz5Cx4OP/zw7LnSUlXuqE697bbbpilTpnRKn+JeHjBgQMm2CRMmZM/P1sLH8UKAmNuHHHJIi/vl6VkAAAAAAAAA3U19rTsAAAAAAAB5EWHBCOdts802JaGvCLqtu+66WaXSCMBGdcmosvraa6+lO+64I/3tb39Lb7zxRpPjRXCxvGpoT3Lbbbel9ddfPwv+RPhxpZVWSjNnzsxCQ+ecc06ToFKvXr2yioHNhVkbi/HcZJNNSqosRzAuqmzuvPPOafz48dm4Dhw4MAsfRQAxjvvEE080OdY+++yTBas6Q1Qc3nvvvZuEPr/2ta9lFYIj8BuVH6MSbQSgJk+enAVUr7zyypIAbnweFUAbi7m1zjrrNHve1Vdfvcm2qBAZwd2Ym1ENd9VVV21SkTqqiV5zzTUl26IvI0aMSN/4xjfS6NGj07Bhw7IwbQSv4zo0DsHHfREh8K4S/YqqxDHGjV100UXZ94hwZsyH1VZbLdXX12ehzVtuuSVdcMEF2TxsLMK68X0GDx7c4f2MZ8Kxxx6bhfcWiZBnzL2tttoq6+eoUaOyYHOEmO+66670l7/8JQuFNxbXLoKqtXTYYYdl86hxSHXq1Klp4403zu7zGO+YfzGeMU8eeuihdNlll2X/bax8Tsd8zotBgwZl1XmjImvj+/D2229PH//4x7PvF/devMwh5n950D6CxOWVyuvqWn7/crzIICqkR/i3PCQcVWAj3B5B5Hh+hueffz5df/31WYXz8urrERqN36joGz1D/JbFXPjqV7/asC1CwN/97nfT+eefn73gIu6/uKdiPl511VXZ/F30b5T+/ftn82T+/Pkd1qeYXxGAP+2000q2/+IXv0g33XRT9iyI34t4pkVV+vitv/XWW7PfwsZh3/h3UrwcoXGoOU/PAgAAAAAAAOhuhIEBAAAAAKCRCINF2OZzn/tcFqpcJEJjETKMpRJR9TVCoT1RhKL/9a9/ZX9H8Ccq8sbSmghrRrApwoRtibBwhDp33333NGnSpJLPIogUSyUioHzeeeelzhSB7wh3lofB//vf/2ZLWzbaaKMsOBzBqtmzZzdsj4BzVH5sTlSOjdDu66+/XlIpMkLSi0T15Z///Ocl7aIycARTI2TYWIRS26qYe9BBB2Whxa4MA4e99toru4YRTItQ2SJxb/75z3/OlrZEUPOPf/xjk4rTHSnGOgLIZ599dsn2CFW3VtF6kQiCxksHyishd7WYVxFqLq88G4G/GMNY2hKVQSPMH4HBRSLEGOHhzghjt0fcC3HfRWC7vDJ2hMpjaU68FCIC6ltuuWXJ9rbCuRHEj/s7fhcaV0yNUPFvfvObbGlLVDePyuNjx45tc1+6l6985SvZb8hJJ51Usv3xxx/P5k5LIpQfv6tf+MIXOjQMHH70ox+lq6++OnuJRWMR/C8P/zdnjTXWyMLB8VKMZ599tuS3rfGzAQAAAAAAAKhcy6+pBgAAAACAJVSESO+99960+eabt6vqZFQg/elPf5p6ql/96ldZeLS1apjlFV6jgnKEgioVbeIaRJsIPFUjgsdRVTFC3VFNsTNFFdGo4hnBp2pEhc/jjjsu3X///WnttdfOKj82du2117bYNsa9vGJjuccee6zZ7RGsjeBYpWLsYyyjXbXXoaNEcCzC4eutt17VbaNqcFQRjjBxZ4o5F8HkCIdHpc5qbLfddtk8GDlyZMqDI488MrvH4ztVI/of90IEW7fYYouSzyIAe91116U8iZcNxH0S49+WmPtRofWee+5JQ4cObfJ5VEBtS9zvUUU5qnZXKyqMRyX26DM904knnpi9bGTZZZet+DckwvnxwoTOEC8muOGGG7IXVlQjfp/ieRv3VgTXN9tss5LP4znQOBAPAAAAAAAAVE4YGAAAAAAAmrHBBhukCRMmpCuvvDKrZttW2CvCoBHmiSp6Bx98cOrpTjnllHT77bdn1WtbColGFc3f/va3WdXa8nBgpWGkCy+8ME2cODGrShtB69ZEiCqCjLF/hBl79+6dusKYMWPSo48+mgWkV1xxxVb3XXPNNdMxxxyTzZOf/exnWaArlAelo6pwS4HeEOPxj3/8o8Uxif40J84XlSSjuvIuu+zS4hhFoCs+j/BjjGWvXr1SLW299dbpiSeeyIL28XdbQdW4fyMwHZWl43t0laji+dxzz2X/bSv0GVXIL7nkkizo3J6AaGeKAHhc+6g23dq1j+uw1VZbZRWR4z6PFymECLiXV7CNZ0HerLPOOtm9dt9992XfOV4AEdciKv3GvRz3dmyPZ8pf//rX7H6LKsnlKn3pQIznlClTsrGI6sltBewjSBlj+8gjj7Tr5RR0L5///OezKrrf/va3W3y2x/246667Zv8+id+7zhT/rokXFfziF7/IXnzRmpVXXjkLAUc14z/96U8Noeby37bnn38+qzgMAAAAAAAAVK9Q9OpdAAAAAABo0+zZs7PA2NSpU9P06dOz9Qi7DBs2LAu9RcizJ4pqlNtvv33JthdeeCENHz68ZP2BBx5Ir7zySlqwYEFaaaWV0qabbprWX3/9Du3LwoUL08MPP5yF6eIazJw5MwvhrbDCCln1wlGjRtU8tBrfP8JQEcZ9++2305w5c7JQ1+DBg7PwX0fPk5iHd955Z3r66afTe++9l4V941wRxoyQZltiDKP9q6++mo1pv379sqrMW265ZXacvIrvGpWjX3vttazf8+bNy8Ljq6yyShagjGBaHkSA+cknn0xvvfVW1ufoY/Qtrs2QIUNSdxD9jkBg3Hfvvvtudo9FUDZCsxHyr7YScnd39913Z4H0xuKej+dPtWLuRqjzjTfeyP6OZ9zAgQOzEGbM47ZeLkDP9dFHH6UHH3wwm1vvvPNOdp/FPTdu3LjsN7arxf+kIH5n4jc4nmcffvhhNlfjd+JjH/tYh//eAwAAAAAAAE0JAwMAAAAAAIsVBgZYUvzzn/9M++23X8m2CGsuv/zyNesTAAAAAAAAAD1ffa07AAAAAAAAANDZjj/++PTYY49llbNjiQrYo0ePrroycGNRrVUQGAAAAAAAAIDOJgwMAAAAAAAA9Hhz5sxJV199dcP6Fltske65556K27///vvpwgsvLNk2bty4Du0jAAAAAAAAADSnrtmtAAAAAAAAAD1IeRXg++67Lz3++OMVtz/22GPT9OnTS7btt99+HdY/AAAAAAAAAGiJMDAAAAAAAADQ4+2+++6pd+/eDevFYjF99rOfTU8++WSr7T788MP0la98JZ199tkl29ddd9205557dlp/AQAAAAAAAGCR+oa/AAAAAAAAAHqoQYMGpWOOOSb98pe/bNj27LPPpjFjxqTx48enXXfdNa2zzjppwIABac6cOenll19O99xzT7rooovSG2+8UXKsPn36pL/+9a8l4WIAAAAAAAAA6CyFYrzyGgAAAAAAoBm33XZb2n777Uu2vfDCC2n48OE16xNAe82aNSt9+tOfTrfffnu7jxFB4L///e/pc5/7XIf2DQAAAAAAAABaUtfiJwAAAAAAAAA9SL9+/dJ1112XDj/88FQoFKpuv95662VBYkFgAAAAAAAAALqSMDAAAAAAAACwxFh66aXTX/7yl3T//fenQw45JA0YMKDV/evq6tKWW26Zzj333PTYY4+lcePGdVlfAQAAAAAAACAUisVi0VAAAAAAAAAAS6L58+enJ598Mj3++OPp7bffTh988EHq3bt3GjhwYFprrbXSmDFj0qBBg2rdTQAAAAAAAACWYMLAAAAAAAAAAAAAAAAAAACQU3W17gAAAAAAAAAAAAAAAAAAANA8YWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMip+lp3APLg3XffTbfffnvD+mqrrZb69u1b0z4BAAAAAAAAAAAAAAB0lrlz56ZXXnmlYX3bbbdNAwcOrGmfoJbmzJmTnnvuuVp3o1sbOXJkWmqppWrdDeiRhIEhpSwIPH78+Fp3AwAAAAAAAAAAAAAAoCauuOKKtOeee9a6G1AzEQQeNWpUrbvRrT3xxBNpww03rHU3oEeqq3UHAAAAAAAAAAAAAAAAAACA5gkDAwAAAAAAAAAAAAAAAABATtXXugOQB6uttlrJ+hVXXJHWWmutmvUHAAAAAAAAAAAAAACgM02ZMiWNHz++xWwFLOl+WLdyWqnQu9bdyLXXivPSyQun1bobsEQQBoaUUt++fUvWIwi84YYb1qw/AAAAAAAAAAAAAAAAtcxWwJIugsBrFNwXQD7U1boDAAAAAAAAAAAAAAAAAABA84SBAQAAAAAAAAAAAAAAAAAgp+pr3QEAAAAAAAAAAAAAAAAAyJNCfSEV6gq17kauFRYWUlpQ617AkkFlYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyKn6WncAAAAAAAAAAAAAAAAAAPKkrlchW2hZ3QLjA11FZWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMgpYWAAAAAAAAAAAAAAAAAAAMip+lp3AAAAAAAAAAAAAAAAAABypb6QCvVqcbaqUKh1D2CJ4WkEAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5VV/rDgAAAAAAAAAAAAAAAABAntTVF7KFltUl4wNdRWVgAAAAAAAAAAAAAAAAAADIKWHgJcCUKVNS3759U6FQSCeeeGKnn2/hwoXpqquuSgcccEAaMWJEWmaZZdKAAQPSeuutl/bZZ590xRVXpHnz5nV6PwAAAAAAAAAAAAAAAAAAurv6WneAzrVgwYL0xS9+MX300UddFjw+6KCD0oQJE5p8Nnny5Gy59NJL06hRo9JFF12U/RcAAAAAAAAAAAAAAAAAgOapDNzDff3rX0933nlnl5zrySefTFtttVWzQeByTzzxRNp8883Tfffd1yV9AwAAAAAAAAAAAAAAAADojoSBe7BjjjkmnXXWWV1yrvfffz+NHz8+vfnmmw3bdtppp3TTTTelGTNmpHfffTfdfPPNaeedd274fPbs2WmvvfZK06ZN65I+AgAAAAAAAAAAAAAAAAB0N/W17gAd77333kuHHXZYuuyyy7rsnD/5yU/SlClTGta/9rWvpd///vepUCg0bNtxxx3TDjvskL73ve+lU089Ndv2+uuvpx/+8IfpnHPO6bK+AgAAAAAAAAAAAAAAALSmUF9Ihd7/l42iqUIyPtBVVAbuYSZOnJjGjh3bpUHg6dOnZ8HfReL8v/vd70qCwIvEtl/96ldpt912a9h2/vnnp8mTJ3dZfwEAAAAAAAAAAAAAAAAAugth4B4iArlf//rX02abbVZSoXfw4MGdfu4I886dO7dh/bjjjkt1dS1PrUWB4EUWLFiQzjvvvE7vJwAAAAAAAAAAAAAAAABAdyMM3APcdNNNaa211kp/+MMf0vz58xu277DDDun666/v9PNfeeWVDX/379+/pOpvSzbYYIM0ZsyYhvV///vfndY/AAAAAAAAAAAAAAAAAIDuShi4B3jyySfTzJkzG9b79euXTj/99CwkPGjQoE4995w5c9K9997bsL7lllumvn37VtR2u+22a/g7qhk/88wzndJHAAAAAAAAAAAAAAAAAIDuShi4BykUCumAAw7IwsFHH310qqvr/Ms7adKkNG/evIb1xtV+21K+74MPPtihfQMAAAAAAAAAAAAAAAAA6O7qa90BFl+fPn3S5z//+XTsscemjTfeuEvP/fTTT5esr7322hW3HTFiRMn6s88+22H9AgAAAAAAAAAAAAAAAGivul6FVFdfqHU3cq1uofGBriIM3AN89atfzZZaeO2110rWV1555YrbDhs2rGR96tSpHdYvAAAAAAAAAAAAAAAAAICeoK7WHaB7e/PNN0vWBw0aVHHb5ZdfvmT9nXfe6bB+AQAAAAAAAAAAAAAAAAD0BCoDs1g++OCDkvUBAwZU3LZ///4l6++//36HBZTfeuutqtpMmTKlQ84NAAAAAAAAAAAAAAAAANCRhIFZLHPnzi1Z7927d8Vty/edN29eh/TpzDPPTCeddFKHHAsAAAAAAAAAAAAAAAAAoJbqanp2ur0FCxaUrNfVVT6lyvdduHBhh/ULAAAAAAAAAAAAAAAAAKAnUBmYxVJfX99qOLg18+fPL1nv27dvh/ULAAAAAAAAAAAAAAAAoN3qC6nQu1DrXuTbQuMDXUUYmMXSr1+/kvU5c+ZU3LZ8344KA3/1q19N++67b1VtpkyZksaPH98h5wcAAAAAAAAAAAAAAAAA6CjCwCyWQYMGlay/9957Fbct33eFFVbokD4NGTIkWwAAAAAAAAAAAAAAAAAAuru6WneA7m3YsGEl62+99VbFbd94442SdQFeAAAAAAAAAAAAAAAAAIBSwsAsljXXXLNkferUqRW3Ld+3/FgAAAAAAAAAAAAAAAAAAEs6YWAWy6hRo0rWJ02aVHHbp59+utVjAQAAAAAAAAAAAAAAAAAs6epr3QG6t5VWWimtttpq6ZVXXsnWH3jggYrbTpgwoeHvPn36pE022aRT+ggAAAAAAAAAAAAAAABQjbr6QrbQsroFxge6isrALLZPfvKTDX8//PDD6bXXXmuzzZw5c9Itt9zSsL7lllumZZZZptP6CAAAAAAAAAAAAAAAAADQHQkDs9j222+/hr+LxWL6wx/+0Gabv/3tb2nmzJkN6wcddFCn9Q8AAAAAAAAAAAAAAAAAoLsSBmax7bTTTmmDDTZoWD/11FPT3Xff3eL+kydPTj/4wQ8a1ocOHZr233//Tu8nAAAAAAAAAAAAAAAAAEB3IwxMs1588cVUKBRKlpbEZ7/4xS8a1ufOnZv22GOP9J///KfJvhESjvDwu+++27Dt5JNPTssss0wnfAsAAAAAAAAAAAAAAAAAgO6tvtYdoGeI8O83vvGN9Pvf/z5bnzFjRtpzzz3T2LFj01ZbbZV69eqVHnrooXTHHXeUtNtnn33SEUccUaNeAwAAAAAAAAAAAAAAAADkmzAwHea3v/1tWrBgQTrzzDMbtkUAOJbmjB8/Pl1wwQVd2EMAAAAAAAAAAAAAAACAthXqUir0KtS6G7kfI6BruN3oMIVCIf3hD39I1113XRozZkyL+40cOTL95S9/SZdffnnq27dvl/YRAAAAAAAAAAAAAAAAAKA7URm4hxs+fHgqFotd1i7ssssu2fLcc8+lCRMmpNdeey3NmzcvDR48OI0dOzaNHj06Cw4DAAAAAAAAAAAAAAAAANA6YWA6TVQAjgUAAAAAAAAAAAAAAAAAgPapa2c7AAAAAAAAAAAAAAAAAACgkwkDAwAAAAAAAAAAAAAAAABATtXXugMAAAAAAAAAAAAAAAAAkCd1vQrZQsuMD3QdlYEBAAAAAAAAAAAAAAAAACCnhIEBAAAAAAAAAAAAAAAAACCnhIEBAAAAAAAAAAAAAAAAACCnhIEBAAAAAAAAAAAAAAAAACCnhIEBAAAAAAAAAAAAAAAAACCn6mvdAQAAAAAAAAAAAAAAAADIlUIhFeoKte5FvhWMD3QVlYEBAAAAAAAAAAAAAAAAACCnhIEBAAAAAAAAAAAAAAAAACCn6mvdAQAAAAAAAAAAAACAPLqm97pddq7d5k3usnMBAADQvagMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOVVf6w4AAAAAAAAAAAAAAAAAQJ4UetVlCy0zPtB13G0AAAAAAAAAAAAAAAAAAJBTwsAAAAAAAAAAAAAAAAAAAJBTwsAAAAAAAAAAAAAAAAAAAJBTwsAAAAAAAAAAAAAAAAAAAJBTwsAAAAAAAAAAAAAAAAAAAJBT9bXuAAAAAAAAAAAAAAAAAADkSV1dIdX1KtS6G7kfI6BrqAwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5VV/rDgAAAAAAAAAAAAAAAABAnhTqYinUuhu5HyOga7jdAAAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp+pr3QEAAAAAAAAAAAAAAAAAyJNCr0Kq61WodTdyP0ZA11AZGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAcqq+1h0AAAAAAAAAAAAAAAAAgDwp1BVSoVeh1t3I/RgBXUNlYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyKn6WncAAAAAAAAAAAAAAAAAAPKkUFeXLbTM+EDXcbcBAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBO1de6AwAAAAAAAAAAAAAAAACQJ4VCIRXqCrXuRu7HCOgaKgMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBO1de6AwAAAAAAAAAAAAAAAACQJ3W9YinUuhu5HyOga6gMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOVVf6w4AAAAAAAAAAAAAAAAAQK7UFVKhrlDrXuSb8YEuozIwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAADRSKNSlQp2l1aWQ33jiM888k7773e+mTTfdNC2//PKpb9++afXVV0/bbLNNOvXUU9Prr7/eoec777zzUqFQ6JBl+PDhLZ7n3Xffbfdx11tvvQ79znSt+i4+HwAAAAAAAAAAAAAAQI931+hNuvR8Wz/6cJeeDwDyaP78+em4445Lp512Wlq4cGHJZ6+88kq23HXXXemEE05Ip59+ejrqqKNSd/Loo4/WugvUiDAwAAAAAAAAAAAAAAAAANDtg8D77LNPuvLKK9vcd/bs2ekrX/lKmjx5cjrjjDNSnqy99totfjZx4sQu7Qv5kd863AAAAAAAAAAAAAAAAAAAFTj++ONLgsBDhw5Nf/zjH7NqwBH+nTRpUlY1uE+fPg37/OY3v0nnnnvuYp/70EMPTcViserlgQceSH379m04zhprrJH+8Y9/VFQZOPat5lxPP/30Yn9PakcYGAAAAAAAAAAAAAAAAADoth5//PF06qmnNqyPGDEiq6J71FFHpVVXXTUttdRSab311ks/+9nP0u23356WWWaZhn2PPfbYNHPmzC7v89tvv50++9nPprlz52brEVK+7LLL0pAhQyqqDDxmzJgu6Sf5IAwMAAAAAAAAAAAAAAAAAHRbJ510Ulq4cGH2d11dXfr3v/+dhg0b1uy+48aNK6kGPGPGjJIgcVc58sgj08svv9yw/vOf/zxtsskmLe4/f/789NRTTzWsjx49utP7SH4IAwMAAAAAAAAAAAAAAABAI4W6gqWCJQ/eeOONdOWVVzas77bbbmnjjTdutc2+++6bNt9884b1c845JxWLxdRV/vGPf6RLL720Yf0Tn/hEOvroo1ttM2nSpIYqwkEYeMkiDAwAAAAAAAAAAAAAAAAAdEvXXnttVjV3kf3337+idgceeGDD39OmTUt333136gpRibhx8Ldv377pz3/+cyoUWg9XP/rooyXrwsBLFmFgAAAAAAAAAAAAAAAAAKBbuvXWW0vWt99++4rabbfddk1CxV3huOOOS2+99VbD+g9+8IO07rrrttmucRh4wIABacSIEZ3WR/JHGBgAAAAAAAAAAAAAAAAA6JYee+yxhr+HDBmSVlpppYrabbjhhqm+vr5h/cEHH0yd7amnnkpnn312w/qqq66avve971XUduLEiQ1/b7TRRm1WEqZnEQYGAAAAAAAAAAAAAAAAALqdYrGYJk+e3LC+9tprV9w2gsCrr756w/qzzz6bOltUAV6wYEHD+s9//vPUr1+/ito2rgw8evToNG/evPTvf/87HXDAAWnkyJHZcaJicIzBF77whXT55Zdn40PP8H+xdQAAAAAAAAAAAAAAAACAbmLGjBlp7ty5Desrr7xyVe2HDRuWnn/++ezvqVOnps50//33p6uuuqqkMvGBBx5YUdtp06alt956q2E9+rrOOuukF198scm+U6ZMyZYLLrggbbzxxlkl4rFjx3bQt6BWhIEBAAAAAAAAAAAAAAAAoJG6ukKq61WodTdyP0a19uabb5asDxo0qKr2yy+/fMPf8+fPT++//35WXbcznHLKKSXrJ554Yqqrq6u6KnD4z3/+U1G7Rx55JH3iE59IF154Ydpzzz2r6C15IwwMAAAAAAAAAAAAAAAAACyWqEZbrcGDB6chQ4a0+5wffPBByXq1Qd7+/fuXrHdWGHjSpEklAd6oCvzZz3624vYTJ05ssm3ZZZdNRxxxRDrggAPSyJEjU9++fdMLL7yQrr766nTaaac1VBKeNWtW2n///dOdd96ZNt100w76RnQ1YWAAAAAAAAAAAAAAAAAAYLGMHz++6jY//vGPswq57TV37tyS9d69e1fVvnz/efPmpc5w5plnpmKx2LD+7W9/OxUKlVdWLq8MPGbMmHTppZemESNGlGyPkHEsX/rSl9Jee+2V7rjjjmz7nDlz0n777ZcmT56c6uvFSrujympIAwAAAAAAAAAAAAAAAADkyIIFC0rW6+qqi0yW779w4cLU0T788MN0/vnnN6yvuOKK6aCDDqrqGGPHjk177LFHGjVqVFp33XXTDTfc0CQI3NigQYOySsSN93n++efTeeed185vQa0JAwMAAAAAAAAAAAAAAAAA3U55ldvycHBb5s+fX7Let2/f1NEuu+yy9N577zWsH3rooWmppZaq6hjf/e53s3Dv448/np5++uk0ZMiQNtsst9xy6ZRTTinZdsEFF1R1XvJDPWcAAAAAAAAAAAAAAAAAYLFcccUVaa211qqqzeDBgxfrnP369StZnzNnTlXty/fvjDDwRRddVLIeYeCu8tnPfjb1798/ffDBB9n6vffem2bPnp2WXnrpLusDHUMYGAAAAAAAAAAAAAAAAAAaKdTFUqh1N3I/Ro1FEHjDDTfs0j4MGjSoZL1xBd5KNN6/rq4uDRw4MHWkGTNmpJtvvrlhfezYsV06RlE5Oc55++23Z+sfffRRevXVV6sObVN7ZbcbAAAAAAAAAAAAAAAAAED+DR06NBUK/xfafuutt6pq/8YbbzT8vcIKK6RevXp1aP9uuOGGNG/evIb1ffbZJ9VijBqbPn16l/eBxScMDAAAAAAAAAAAAAAAAAB0O3379k0rrbRSw/rUqVOrat94/zXXXDN1tOuuu65kfc8990xdrVgsNhkzuh9hYAAAAAAAAAAAAAAAAACgWxo1alTD388880xauHBhRe3efPPNNGPGjGaP01Fuvvnmhr9HjhyZ1l9//XaFed955500adKkdNttt6WXX365qvbxPRtbccUVq+4DtScMDAAAAAAAAAAAAAAAAAB0Sx//+Mcb/v7www/TU089VVG7CRMmlKyPGzeuQ/v14osvpmnTpjWsb7/99u06zh//+Me0wgorpA022CA7xtlnn11x2wULFqRHHnmkYX3w4MFptdVWa1c/qC1hYAAAAAAAAAAAAAAAAACgW/rkJz9Zsn7NNddU1O7qq68uWd955507tF/33ntvyfrWW2/druNstNFGJes33HBDxW1vvPHG9N577zWsb7fddu3qA7UnDAwAAAAAAAAAAAAAAAAAjdXVpYKl1SXGKA+23HLLkmq3f/7zn9NHH33Uapvp06eniy66qCSoO3z48A7tV+OKvGHUqFHtrnwcFX0XeeCBB7KlkqrAJ510Usm2I488sl19oPbycbcBAAAAAAAAAAAAAAAAAFSprq4ufe1rX2tYf/7559MxxxzT4v4LFy5Mhx56aHr//fcbtn3rW9/q8H49/vjjJevrrbdeu47Tu3fvrL+NffnLX06zZs1qtd33vve9NGHChIb1LbbYIu24447t6gO1V1/rDgAAAAAAAAAAAAD0ZA9sPa7LzrXZXfd12bkAAAAgL77+9a+nM888M7388svZ+h/+8Ifsv6eeempaaqmlGvZ799130+GHH56uueaakqrA++yzT7PHffHFF9Oaa65Zsq1YLFbUp2effbbh74EDB6Zlllkmtdfxxx+fzj///PTGG29k6xMnTkw77LBD+vvf/57WXnvtkn3ffvvt9O1vfztdcMEFDdtiDM4555x2n5/aEwYGAAAAAAAAAAAAAAAAALqtCNpeeOGFaeedd06zZ89uCARfcsklaffdd0/Dhg1LL730UrrqqqvSBx980NBuhRVWKAnNdpQIDE+dOrVhPc6/OJZbbrl02WWXpZ122qnh+0XV3/XXXz9tv/32afTo0VmF5MmTJ6ebbrqpYZ/Qp0+frG17KxOTD8LAAAAAAAAAAAAAAAAAAEC3ttVWW6X//Oc/ae+9907vv/9+tm369OnpvPPOa3b/COhef/31aY011ujwvrz33ntp7ty5Dev9+/df7GNuueWW6cYbb0z7779/evXVV7NtCxYsSDfffHO2NGfo0KHZ999ll10W+/zUVl2Nzw8AAAAAAAAAAAAAAAAAsNiicu7TTz+dPv/5z6elllqq2X369euXjjrqqPTkk09mFXU7Q+Pqw6GlvlRr6623To899lg6/vjjs6rGLYkQ8NFHH52NhSBwz6AyMAAAAAAAAAAAAABAjj2w9bguO9dmd93XZecCAMizQqGQCnWFWncj92OURyuvvHK64IIL0llnnZVuu+229PLLL6cZM2akZZddNq277rppiy22SAMGDKjoWMOHD0/FYrHqPqyyyirtaleJQYMGpZNPPjmddNJJaeLEiVk4OCogL6p2PHLkyDRu3LhUV6eWbE8iDAwAAAAAAAAAAAAAAAAA9Cj9+/dPu+++e+qpevXqlcaOHZst9Hyi3QAAAAAAAAAAAAAAAAAAkFPCwAAAAAAAAAAAAAAAAAAAkFPCwAAAAAAAAAAAAAAAAAAAkFPCwAAAAAAAAAAAAAAAAAAAkFP1te4AAAAAAAAAAAAAAAAAAORJoa6QLbTM+EDXURkYAAAAAAAAAAAAAAAAAAByShgYAAAAAAAAAAAAAAAAAAByShgYAAAAAAAAAAAAAAAAAAByShgYAAAAAAAAAAAAAAAAAAByShgYAAAAAAAAAAAAAAAAAAByqr7WHQAAAAAAAAAAAAAAAACAPCnUFbKFlhkf6DoqAwMAAAAAAAAAAAAAAAAAQE4JAwMAAAAAAAAAAAAAAAAAQE4JAwMAAAAAAAAAAAAAAAAAQE4JAwMAAAAAAAAAAAAAAAAAQE4JAwMAAAAAAAAAAAAAAAAAQE7V17oDAAAAAAAAAAAAAAAAAJAnhUIhFerU4mxrjICu4WkEAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5JQwMAAAAAAAAAAAAAAAAAAA5VV/rDgAAAAAAAAAAAADQ+R7d5RNder7R19/RpecDAADoSIVehVTXq1DrbuR+jICuoTIwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADkVH2tOwAAAAAAAAAAAAAAAAAAeVIoFFKhrlDrbuR+jICuoTIwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADkVH2tOwAAAAAAAAAAAAAAAAAAeVKoq8sWWmZ8oOu42wAAAAAAAAAAAAAAAAAAIKeEgQEAAAAAAAAAAAAAAAAAIKeEgQEAAAAAAAAAAAAAAAAAIKeEgQEAAAAAAAAAAAAAAAAAIKeEgQEAAAAAAAAAAAAAAAAAIKfqa90BAAAAAAAAAAAAAAAAAMiTQl0shVp3I/djBHQNtxsAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAORUfa07AAAAAAAAAAAAAAAAAAB5UigUUqGuUOtu5H6MgK6hMjAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAOSUMDAAAAAAAAAAAAAAAAAAAORUfa07AAAAAAAAAAAAAAAAAAB5UqiryxZaZnyg67jbAAAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp+pr3QEAAAAAAAAAAAAAAAAAyJW6QirUFWrdi3wzPtBlVAYGAAAAAAAAAAAAAAAAAICcEgYGAAAAAAAAAAAAAAAAAICcEgYGAAAAAAAAAAAAAAAAAICcEgYGAAAAAAAAAAAAAAAAAICcEgYGAAAAAAAAAAAAAAAAAICcqq91BwAAAAAAAAAAAAAAAAAgTwqFQirUqcXZ1hgBXcPTCAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAcqq+1h0AAAAAAAAAAAAAAAAAgFwpFP7/hZYZH+gyKgMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBO1de6AwAAAAAAAAAAAAAAAACQJ4W6QrbQMuMDXUdlYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyClhYAAAAAAAAAAAAAAAAAAAyKn6WncAAAAAAAAAAAAAAAAAAPKkUFeXLbTM+EDXcbcBAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBO1de6AwAAAAAAAAAAAAAAAACQJ4VCIRXqCrXuRu7HCOgaKgMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBOCQMDAAAAAAAAAAAAAAAAAEBO1de6AwAAAAAAAAAAAAAAAACQJ4W6QirUqcXZ1hgBXcPTCAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAckoYGAAAAAAAAAAAAAAAAAAAcqq+1h0AAAAAAAAAAAAAAAAAgFypK6RCXaHWvcg34wNdRmVgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIqfpadwAAAAAAAAAAAAAAAAAA8qRQKKRCXaHW3cj9GAFdQ2VgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIqfpadwAAAAAAAAAAAAAAAAAAcqWukFKdWpxtjhHQJTyNAAAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp4SBAQAAAAAAAAAAAAAAAAAgp+pr3QEAAAAAAAAAAAAAAAAAyJNCoZAttMz4QNdRGRgAAAAAAAAAAAAAAAAAAHJKGBgAAAAAAAAAAAAAAAAAAHJKGBgAAAAAAAAAAAAAAAAAAHJKGBgAAAAAAAAAAAAAAAAAAHJKGBgAAAAAAAAAAAAAAAAAAHKqvtYdAAAAAAAAAAAAAAAAAIA8KRTqUqFOLc62xgjoGu42AAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIKWFgAAAAAAAAAAAAAAAAAADIqfpadwAAAAAAAAAAAAAAgPx79Vv7ddm5VvntJV12LgAAgLwTBgYAAAAAAAAAAAAAAACARgp1hWyhZcYHuk5dF54LAAAAAAAAAAAAAAAAAACogjAwAAAAAAAAAAAAAAAAAADklDAwAAAAAAAAAAAAAAAAAADklDAwAAAA/x97dwIlVXnmDfyptpGWxbDIZhARRXCZgOIgokZJwJgPMqIBZdzHxIjLfCYa8xnNiTpREw0aE8YljlFmQiQmmIiKWwTFiI4GM+DGIhIJHpRFAQEBabq/c8tDTRd0Q69Vt/H3O+fGem+9732fe02VJvqvBwAAAAAAAAAAAACAlBIGBgAAAAAAAAAAAAAAAACAlCotdgEAAAAAAAAAAAAAAAAAkColmYgSvTh3+oyAgvBtBAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAADsMhYsWBBXXHFFHHHEEdG+ffto2bJl9OjRI4499tgYN25cvP/++0229+zZsyOTydTrOPHEE2u9z7PPPhvnnXde9O3bN9q2bRutWrWK3r17x/Dhw2PixInx8ccfN9k9UnjCwAAAAAAAAAAAAAAAAABAs1deXh7f+9734qCDDsqGfl955ZVYvXp1fPLJJ7FkyZJ4/vnnsyHhXr16xV133dUkNcyZMyea0rJly7KB3yFDhsR9990X8+fPj3Xr1sWGDRti4cKF8dhjj8VZZ52VDQn/+c9/btJaKJzSAu4FAAAAAAAAAAAAAAAAAKmX7dRakil2Gal/RmkLAo8aNSqmTJmy07lJcPbCCy/MBml/9rOfNXpn4KaydOnSOP744+Ott97a6dwk/JwEhn/3u9/FKaec0mQ1URg6AwMAAAAAAAAAAAAAAAAAzdrVV1+dFwTu0qVL3HnnndlQbBL+nTt3blx11VWx++675+bcdttt2e66TdUZ+LjjjovKyspaH0888cQOw86nnnpqXhB4wIAB8dBDD8XKlSuz3YFfeOGFOO2003Lvb9myJc4+++x47bXXGvUeKTxhYAAAAAAAAAAAAAAAAACg2UrCruPGjcuNe/Xqle3QO3bs2OjevXuUlZVF375944YbbogZM2ZE69atc3Mvv/zyWLNmTZOEgfv3799o1/3lL38ZM2fOzI1POumkePHFF7N/7NixY/aejjrqqPjtb38b48ePz81bv359fPvb3260OigOYWAAAAAAAAAAAAAAAAAAoNm67rrroqKiIvu6pKQkJk+eHF27dq127qBBg/K6Aa9atSovSNwQSRfiDz/8MDfu169fo1x38+bNcf311+fGScD5N7/5TbRo0aLa+ZdccklcdNFFufH06dNj2rRpjVILxSEMDAAAAAAAAAAAAAAAAAA0S8uWLYspU6bkxsOHD4/DDjtsh2tGjx4dAwcOzI3vvffeqKysbHAtSTfiqhorDPzII4/E+++/nxt/5zvfyetuXJ0f/ehHsccee+TG99xzT6PUQnEIAwMAAAAAAAAAAAAAAAAAzdJjjz0W5eXlufGYMWNqte7000/PvV66dGnMnDmzwbXMmTMn97q0tDQOOeSQaAxVw86J0047badrOnToEF/5yldy40cffTQ2btzYKPVQeMLAAAAAAAAAAAAAAAAAAFBVpiQyjh0eyTNKg+nTp+eNhwwZUqt1xx9//Hah4sYMA/fp0ydatmwZjX2PBx54YHz+85+v8z2uW7cunnvuuUaph8JLx6cNAAAAAAAAAAAAAAAAAKCOXn311dzrzp07R7du3Wq1Lunam3Tv3WrWrFkNrmX27Nm51/3794/GsGrVqnj33Xfrdd1t5zbGPVIcwsAAAAAAAAAAAAAAAAAAQLNTWVkZ8+fPz4179+5d67VJELhHjx658VtvvdWgWpLOu2+//XZu3K9fv/j4449jwoQJccopp2T3Kisri3bt2sVBBx0UF1xwQUybNm2n1503b17euC732KtXr7xxQ++R4vnf2DoAAAAAAAAAAAAAAAAAQDORdM3dtGlTbrz33nvXaX3Xrl1j0aJF2ddVu+/Wt0NxEk7e6n/+53+iZ8+esWLFirx5Sb1r1qzJhnzvvvvuGDJkSNxzzz3bBXe3eu+99/LGdbnH5P6qaug9UjzCwAAAAAAAAAAAAAAAQIMt+39nFWyvLjf9umB7AQC1s3Dhwjqv6dSpU3Tu3Lneey5fvjxv3KFDhzqtb9++fe51eXl5rF27Ntq2bVuvWubMmZM3njRpUq3WPfPMM3HkkUfGww8/HEcddVSj3mOLFi2idevWsX79+uz4ww8/rPVa0kUYGAAAAAAAAAAAAAAAAABokJEjR9Z5zTXXXBPXXnttvfdct25d3riuQd42bdrkjRsSBp49e/Z255Kg84UXXhhf//rXs12Ck87BSWj6D3/4Q/ziF7/I7pdYuXJlfO1rX4tZs2Zl5zX2PW4NA2/dj+ZHGBgAAAAAAAAAAAAAANhlLP/+2QXdr/OP/6ug+wFQICWZTw9qloLns2nTpu064dbFtvM3b95c71q27Qw8dOjQuP/++7Pdj6s6/PDDs8e3vvWt+OpXvxpvvvlm9vwHH3wQ55xzTsyYMaPJ7rEh90dxlRR5fwAAAAAAAAAAAAAAAACAOtuyZUveuKSkbpHJbedXVFTUu5bjjjsuG+7t06dPDBo0KKZMmbJdELiqHj16xOOPPx4dOnTInXvuuefi6aefbrJ7bMj9UVw6AwMAAAAAAAAAAAAAAAAADfLQQw/FAQccUKc1OwrL1kZpaekOg7M7U15enjdu2bJlvWu56aab6rwmCQR/73vfiyuvvDJ3buLEidmuwk1xjw25P4pLGBgAAAAAAAAAAAAAAAAAaJAkCHzIIYcUdM9WrVrljTdu3Fin9dvOL0ZY9pxzzskLA0+bNq3J7lEYuPkSBgYAAAAAAAAAAAAAoNlYfvW5Bd2v8w0TCrofAAC116FDh7zxRx99VKf1VeeXlJREu3btotC6du0a++67byxevDg7fvfdd2Pz5s3RokWLRrnHtWvX5l537NixUWqm8EqKsCcAAAAAAAAAAAAAAAAAQIN06dIlMplMbrxixYo6rV+2bFleUHa33XaLYt1HVR988EFeWLiqutzjhx9+mA0Wb9W5c+cG1Unx6AwMAAAAAAAAAAAAAAAAAFVkSjKRKdGLc2fPqNhatmwZ3bp1i6VLl+a66tZF1fn77bdfFEtlZeV291VTXXW5x23nFvMeaRjfRgAAAAAAAAAAAAAAAABAs3TooYfmXi9YsCAqKipqtW758uWxatWqaq9TV8meScfe119/PaZNmxYrV66s0/qklq1KS0ujXbt2uXGvXr2iVatWufHcuXNrfd158+bljRtyjxSXMDAAAAAAAAAAAAAAAAAA0CwdeeSRudfr16+PN998s1brXnrppbzxoEGD6l3DlVdeGZ07d45/+Id/iKFDh8aUKVNqvTYJES9evDg37t+/f2Qy/9t1ebfddosBAwbkxrNmzdquk3Ah7pHiKi3y/gAAAAAAAAAAAAAAOcuvPreg+3W+YUJB9wMAABrXCSecED/60Y9y46lTp9aqA+6jjz6aNx42bFi9a/jCF76QN37yySfjG9/4Rq3WTp48OW88ZMiQau/xz3/+c/Z10nX45ZdfzgtB1yR5Flv17NkzevfuXauaSB+dgQEAAAAAAAAAAAAAAACAZmnw4MGxzz775MZ33313fPLJJztckwRqJ02alBsfc8wx2bBsfX3lK1+JFi1a5MYPP/xwLFmyZKfr1q1bFzfffHNunHQEPv/887ebd+qpp+aNx48fv9NrJ4Hk+fPn58ZnnnnmTteQXsLAAAAAAAAAAAAAAAAAAECzVFJSEhdffHFuvGjRorjssstqnF9RURHnnnturF27Nnfu0ksvbVANnTp1ipEjR+bGmzZtigsuuCC2bNlS45rkvaR78DvvvJM7N2bMmGq79x544IFx4okn5sb3339//P73v6/x2suXL8/uv1VZWVnemOZHGBgAAAAAAAAAAAAAAAAAqkg6tGZKHDs8MplIi0suuSR69OiRG99+++3Zcxs3bsybt3r16hg9enRMnTo1ryvwqFGjqr1uEtTN/nehylGTpMPvHnvskRs//vjjcdJJJ8XSpUu3m7t48eIYPnx4/O53v8sLFP/85z+v8fo33nhjlJaWZl9XVlbG2WefHffcc8928+bOnRtf+tKXsntsdfnll0f37t1rvDbp9+mfeQAAAAAAAAAAAAAAAACAZqh169bZbrnDhg2LDRs25ALBDzzwQIwYMSK6du2aDcc+8sgjsW7duty6jh07xsSJExulhp49e8avf/3rOPXUU7PdhxNJ6Hj//ffP1nXQQQfF5s2b44033ojp06dHeXl5bm27du2y4eEkEFyTww47LG666aZssDeRBJ3PP//8GDduXHz5y1+OVq1axeuvvx5PPfVUbv/EUUcdFddcc02j3CPFIwwMAAAAAAAAAAAAAAAAADRrRx99dDz88MNxyimnxNq1a7PnVq5cGRMmTKh2fhIQfuKJJ2LfffdttBq+/vWvx+TJk+O8887LdiHeGtpNQsjJUZ0DDjggJk2aFAMGDNjp9S+77LL45JNP4uqrr84FfufPn589qjN48OBsILlFixYNui+Kr6TYBQAAAAAAAAAAAAAAAAAANNTQoUNj3rx5ccYZZ0RZWVm1c5IOumPHjs126O3Xr1+j13DyySfHa6+9Fpdcckm0adOmxnlJCPnaa6/Nzj3iiCNqff0rr7wyXnzxxfjiF78YmUym2jndunWLm2++OWbMmJHtOkzzpzMwAAAAAAAAAAAAAAAAALBL2HvvvWPixIlx1113xbPPPht///vfY9WqVbHnnntGnz594qijjoq2bdvW6lo9e/aMysrKOtfQvXv3GD9+fNx6663x8ssvx9y5c+ODDz6I0tLSbFC3b9++cfjhh0d9DRw4MBv0Xbp0aTz//PPZP27YsCE6dOiQDTgn4eJkL3Yd/mwCAAAAAAAAAAAAAAAAALuUpCvviBEjilpDixYt4uijj84eTRV8PvXUU5vk2qSLMDAAAAAAAAAAAAAAAAAAVJUp+fSgZp4PFIxPGwAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApFRpsQsAAAAAAAAAAAAAAAAAgDTJlGSyBzXzfKBwdAYGAAAAAAAAAAAAAAAAAICUEgYGAAAAAAAAAAAAAAAAAICUEgbeBS1YsCCuuOKKOOKII6J9+/bRsmXL6NGjRxx77LExbty4eP/995ts79mzZ0cmk6nXceKJJzZZXQAAAAAAAAAAAAAAAAAAzZEw8C6kvLw8vve978VBBx2UDf2+8sorsXr16vjkk09iyZIl8fzzz2dDwr169Yq77rqrSWqYM2dOk1wXAAAAAAAAAAAAAAAAAOCzqLTYBdB4QeBRo0bFlClTdjp3w4YNceGFF8b8+fPjZz/7WaN3BgYAAAAAAAAAAAAAAAAAoHHoDLyLuPrqq/OCwF26dIk777wz2xE4Cf/OnTs3rrrqqth9991zc2677ba47777mqwz8HHHHReVlZW1Pp544olGrQUAAAAAAAAAAAAAAACgXjKZiJISx46O5BkBBSEMvAt47bXXYty4cblxr169sh16x44dG927d4+ysrLo27dv3HDDDTFjxoxo3bp1bu7ll18ea9asaZIwcP/+/RvtugAAAAAAAAAAAAAAAAAAn0XCwLuA6667LioqKrKvS0pKYvLkydG1a9dq5w4aNCivG/CqVavygsQNkXQh/vDDD3Pjfv36Ncp1AQAAAAAAAAAAAAAAAAA+q4SBm7lly5bFlClTcuPhw4fHYYcdtsM1o0ePjoEDB+bG9957b1RWVja4lqQbcVXCwAAAAAAAAAAAAAAAAAAADSMM3Mw99thjUV5enhuPGTOmVutOP/303OulS5fGzJkzG1zLnDlzcq9LS0vjkEMOafA1AQAAAAAAAAAAAAAAAAA+y4SBm7np06fnjYcMGVKrdccff/x2oeLGDAP36dMnWrZs2eBrAgAAAAAAAAAAAAAAAAB8lpUWuwAa5tVXX8297ty5c3Tr1q1W65KuvUn33q1dhWfNmtXgWmbPnp173b9//wZfDwAAAAAAAAAAAAAAAKAYMplM9qBmng8Ujs7AzVhlZWXMnz8/N+7du3et1yZB4B49euTGb731VoNqWbduXbz99tu5cb9+/eLjjz+OCRMmxCmnnJLdq6ysLNq1axcHHXRQXHDBBTFt2rQG7QkAAAAAAAAAAAAAAAAAsKvTGbgZW7VqVWzatCk33nvvveu0vmvXrrFo0aLs63fffbfBHYqTcPJW//M//xM9e/aMFStW5M1L6l2zZk3Mmzcv7r777hgyZEjcc8890atXrwbtDwAAAAAAAAAAAAAAAACwK9IZuBlbvnx53rhDhw51Wt++ffvc6/Ly8li7dm29a5kzZ07eeNKkSdsFgavzzDPPxJFHHhkvvvhivfcGAAAAAAAAAAAAAAAAANhV6QzcjK1bty5v3LZt2zqtb9OmTd44CQPX9RpbzZ49e7tznTt3jgsvvDC+/vWvZ7sEJ52DFy5cGH/4wx/iF7/4RS58vHLlyvja174Ws2bNys5rjJB0bYLIVSV1AQAAAAAAAAAAAAAAAACkjTBwM7Zp06a8cYsWLeq0ftv5mzdvbrTOwEOHDo37778/OnXqlHf+8MMPzx7f+ta34qtf/Wq8+eab2fMffPBBnHPOOTFjxoxoqDvuuCOuu+66Bl8HAAAAAAAAAAAAAAAAAKDYhIGbsS1btuSNS0pK6rR+2/kVFRX1ruW4446LDh06xKJFi6J9+/YxZcqUaNWqVY3ze/ToEY8//ngcdthh8eGHH2bPPffcc/H0009ng8QAAAAAAAAAAAAAAAAARZNkr+qY1/rM8XygYISBm7HS0tIdhoN3pry8PG/csmXLetdy00031XlNEgj+3ve+F1deeWXu3MSJE4WBAQAAAAAAAACgGqt+fFFB92v//TsKuh8AAAAAANUTBm7Gtu28u3Hjxjqt33Z+Q8LA9XXOOefkhYGnTZvW4GtedNFFMXr06DqtWbhwYYwcObLBewMAAAAAAAAAAAAAAAAANCZh4GasQ4cOeeOPPvqoTuurzi8pKYl27dpFoXXt2jX23XffWLx4cXb87rvvxubNm6NFixb1vmbnzp2zBwAAAAAAAAAAAAAAAABAc1dS7AKovy5dukQmk8mNV6xYUaf1y5Yty73u2LFj7LbbblGs+6jqgw8+KEodAAAAAAAAAAAAAAAAAABpIwzcjLVs2TK6deuWGydddeui6vz99tsviqWysnK7+wIAAAAAAAAAAAAAAAAAIKK02AXQMIceemgsXbo0+3rBggVRUVERJSU7z3gvX748Vq1alXed+kr2TLr5Jp2Gk6Nfv36x11571Xp9UstWpaWl0a5du3rXAgAAAAAAAAAAAAAAANBQmZJM9qBmng8Ujs7AzdyRRx6Ze71+/fp48803a7XupZdeyhsPGjSo3jVceeWV0blz5/iHf/iHGDp0aEyZMqXWa1esWBGLFy/Ojfv37x+ZjL8IAAAAAAAAAAAAAAAAAAAkhIGbuRNOOCFvPHXq1Fqte/TRR/PGw4YNq3cNX/jCF/LGTz75ZK3XTp48OW88ZMiQetcBAAAAAAAAAAAAAAAAALCrEQZu5gYPHhz77LNPbnz33XfHJ598ssM1K1eujEmTJuXGxxxzTPTs2bPeNXzlK1+JFi1a5MYPP/xwLFmyZKfr1q1bFzfffHNunHQEPv/88+tdBwAAAAAAAAAAAAAAAADArkYYuJkrKSmJiy++ODdetGhRXHbZZTXOr6ioiHPPPTfWrl2bO3fppZc2qIZOnTrFyJEjc+NNmzbFBRdcEFu2bKlxTfLeN77xjXjnnXdy58aMGRO9e/duUC0AAAAAAAAAAAAAAAAAALsSYeBdwCWXXBI9evTIjW+//fbsuY0bN+bNW716dYwePTqmTp2a1xV41KhR1V43Ceom3XqrHjVJOvzuscceufHjjz8eJ510UixdunS7uYsXL47hw4fH7373u7xA8c9//vM63DUAAAAAAAAAAAAAAAAAwK6vtNgF0HCtW7eO+++/P4YNGxYbNmzIBYIfeOCBGDFiRHTt2jUbwH3kkUdi3bp1uXUdO3aMiRMnNkoNPXv2jF//+tdx6qmnZrsPJ5LQ8f7775+t66CDDorNmzfHG2+8EdOnT4/y8vLc2nbt2mXDw0kgGAAAAAAAAAAAAAAAAKD4MhEZvTh3rObmk0DjEgbeRRx99NHx8MMPxymnnBJr167Nnlu5cmVMmDCh2vlJQPiJJ56Ifffdt9Fq+PrXvx6TJ0+O8847L9uFOJF0J05CyMlRnQMOOCAmTZoUAwYMaLQ6AAAAAAAAAAAAAAAAAAB2FX6aYBcydOjQmDdvXpxxxhlRVlZW7ZxWrVrF2LFjsx16+/Xr1+g1nHzyyfHaa6/FJZdcEm3atKlxXhJCvvbaa7NzjzjiiEavAwAAAAAAAAAAAAAAAABgV6Az8C5m7733jokTJ8Zdd90Vzz77bPz973+PVatWxZ577hl9+vSJo446Ktq2bVura/Xs2TMqKyvrXEP37t1j/Pjxceutt8bLL78cc+fOjQ8++CBKS0ujW7du0bdv3zj88MPrcXcAAAAAAAAAAAAAAAAAAJ8twsC7qKQr74gRI4paQ4sWLeLoo4/OHgAAAAAAAAAAAAAAAAAA1J0wMAAAAAAAAAAAAOwC1oy7tKD7fe67Py/ofgAAAADwWSUMDAAAAAAAAAAAAAAAAABVlWQ+PaiZ5wMFU1K4rQAAAAAAAAAAAAAAAAAAgLoQBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQqLXYBAAAAAAAAAAAAAAAAAJAqmZLIZPTi3CHPBwrGpw0AAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFKqtNgFAAAAAAAAAAAAAAAAAECqlGQ+PaiZ5wMFozMwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACkVGmxCwAAAAAAAAAAAAAAAACANMlkMpEp0YtzZ88IKAzfRgAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAAAAAAAAAAFIlk/n0oGaeDxSMzsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSpcUuAAAAAAAAAAAAAAAAAABSpaTk04OaeT5QMD5tAAAAAAAAAAAAAAAAAACQUsLAAAAAAAAAAAAAAAAAAACQUsLAAAAAAAAAAAAAAAAAAACQUsLAAAAAAAAAAAAAAAAAAACQUsLAAAAAAAAAAAAAAAAAAACQUqXFLgAAAAAAAAAAAAAAAAAAUiWT+fSgZp4PFIzOwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAgLpZd9f3C7ZXm7E/LtheAAAAAAAAAGxPZ2AAAAAAAAAAAAAAAAAAAEgpnYEBAAAAAAAAAAAAAAAAoIpMJhOZEr04d/aMgMLwbQQAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAAClVWuwCAAAAAAAAAAAAAACA+lv/Hz8o2F6tz7++YHsBQFFlSj49qJnnAwXj0wYAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAAClVWuwCAAAAAAAAAAAAAAAAACBVSjKfHtTM84GC0RkYAAAAAAAAAAAAAAAAAABSShgYAAAAAAAAAAAAAAAAAABSShgYAAAAAAAAAAAAAAAAAABSShgYAAAAAAAAAAAAAAAAAABSShgYAAAAAAAAAAAAAAAAAABSqrTYBQAAAAAAAAAAAAAAAABAmmQyJdmDmnk+UDg+bQAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAAAAAAAAAAFIlk7TiTP6DGnk8UDA6AwMAAAAAAAAAAAAAAAAAQEoJAwMAAAAAAAAAAAAAAAAAQEoJAwMAAAAAAAAAAAAAAAAAQEoJAwMAAAAAAAAAAAAAAAAAQEoJAwMAAAAAAAAAAAAAAAAAQEqVFrsAAAAAAAAAAAAAAAAAAEiVTMmnBzXzfKBgfNoAAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClSotdAAAAAACQfht+fX3B9trjrB8UbC+AYvG9CgAAAAAAAABAbQkDAwAAAAAAAAAAAM3yR7ASfggLAACAJpHJfHpQM88HCqakcFsBAAAAAAAAAAAAAAAAAAB1IQwMAAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApJQwMAAAAAAAAAAAAAAAAAAApVVrsAgAAAAAAAAAAAAAAAAAgVUpKPj2omecDBSMMDAAAAAAAAEC9bJh4Y8H22uPMqwq2FwAAAAAAAECaiN4DAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKlRa7AAAAAAAAAAAAAAAAAABIl0xERi/OHcsUuwD4zPBtBAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKVVa7AIAAAAAAAAojo2TbirofmX//P8Kuh8AAAAAAAAAwK5AZ2AAAAAAAAAAAAAAAAAAAEgpnYEBAAAAAAAAAAAAAAAAoKqSzKcHNfN8oGB0BgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAdhkLFiyIK664Io444oho3759tGzZMnr06BHHHntsjBs3Lt5///0mr+HDDz+M2267LUaOHBn77bdf7Lnnntk6unXrFkcddVRceeWVMWfOnDpfN7mfTCZT56OsrKxJ7pPCKC3QPgAAAAAAAAAAAAAAAAAATaa8vDyuuuqquOWWW6KioiLvvSVLlmSP559/Pn74wx/GrbfeGmPHjm30GrZs2RI33nhj/OQnP4mPP/54u/eTIHJy/Pd//3fcdNNNcfLJJ8fdd98de+21106vvXjx4li9enWj10z66QwMAAAAAAAAAAAAAAAAADT7IPCoUaPipz/96XZB4G1t2LAhLrzwwvjOd77TqDV88sknMWLEiGzYuLogcHX++Mc/xuGHHx4LFy7c6dzZs2c3QpU0R8LAAAAAAAAAAAAAAAAAAECzdvXVV8eUKVNy4y5dusSdd96Z7QachH/nzp2b7Rq8++675+bcdtttcd999zVaDUnA+IknnsiNy8rK4rLLLouXXnop1qxZk61j/vz52a7E3bp1y81LakxCxB999NEOrz9nzpzc6xYtWsSmTZuisrKyVsfGjRsb7T4pPGFgAAAAAAAAAAAAAAAAAKgqU+KozZESr732WowbNy437tWrV7aL7tixY6N79+7ZUG7fvn3jhhtuiBkzZkTr1q1zcy+//PJsULehXnjhhbj33ntz486dO8eLL74Yt9xySwwcODD23HPPbB0HHnhgtiPxq6++mj2/VRIS/vGPf1zrzsAHH3xwXrCZXVt6Pm0AAAAAAAAAAAAAAAAAAHV03XXXRUVFRfZ1SUlJTJ48Obp27Vrt3EGDBuV1A161alVekLi+tr3GxIkTo3///jXO32uvveLhhx+Oz33uc7lz48eP32EH36qdgfv169fgmmk+hIEBAAAAAAAAAAAAAAAAgGZp2bJlMWXKlNx4+PDhcdhhh+1wzejRo/O68iYdfSsrK+tdw/r16+Pxxx/PCxwPGzZsp+u6dOkS559/ft51ks7F1fnoo4/ib3/7W24sDPzZIgwMAAAAAAAAAAAAAAAAADRLjz32WJSXl+fGY8aMqdW6008/Pfd66dKlMXPmzHrX8Oqrr+Z19D3xxBNrvXbw4MF54wULFtS4R9XAsjDwZ4swMAAAAAAAAAAAAAAAAADQLE2fPj1vPGTIkFqtO/7447cLFdfX2rVr46CDDoq2bdtmxz179qz12rKysrzx6tWrq503Z86cvLEw8GdLabELAAAAAAAAAAAAAAAAAACoj6Rj7ladO3eObt261WrdIYccEqWlpbmuwrNmzap3DSeccEK8+eabuWDwbrvtVuu18+fPzxt36tSp2nmzZ8/Ovf785z8fe+21V73rpfnRGRgAAAAAAAAAAAAAAAAAqspkHLU5iqyysjIvTNu7d+9ar02CwD169MiN33rrrUapKekO3KpVq1rPnzx5ct64b9++O+0MnHQFrqioiCeffDL+5V/+Jbtm67777bdfjBo1Kn7961/H5s2bG3AnpInOwAAAAAAAAAAAkAIbf39LQfcrG315QfcDAAAAAGhsq1atik2bNuXGe++9d53Wd+3aNRYtWpR9/e6770ahPfPMMzFz5szcuH379nHMMcdsN2/Lli3x+uuv58YbNmyIww47LK8r8lbvvPNO9njwwQfjuuuuizvvvDOGDRvWhHdBIQgDAwAAAAAAAAAAAAAAAAANsnDhwjqv6dSpU3Tu3Lneey5fvjxv3KFDhzqtT8K3W5WXl8fatWuzHXYLYf369TF27Ni8c+eff362Y/G2FixYkA0AVw0R18bbb78dX/3qV+Pf//3ft9uL5kUYGAAAAAAAAAAAAAAAAABokJEjR9Z5zTXXXBPXXnttvfdct25d3riuQd42bdrkjQsVBq6srIyzzjorG/KtGmT+/ve/X+382bNnb3euZcuW2Wuce+650adPn+y9LFmyJJ566qkYN25ctjvw1q7CF110UbZr8j/90z814V3RlEqa9OoAAAAAAAAAAAAAAAAAAE1g06ZNeeMWLVrUaf228zdv3hyFCAJfcMEF8cc//jHv/D333BPt2rWrds2cOXPyxj179owXXngh/uM//iOOPvro2GuvvaKsrCx69+4dF198ccydOzdGjRqVt+fZZ58dq1ataqK7oqkJAwMAAAAAAAAAAAAAAAAAzU7S9baqkpK6RSa3nV9RURFNKbl+0qU3CfFWdcUVV8TJJ59c47qk8+8pp5wS/fv3j3322SeeeOKJOPzww2ucnwSD77///hg0aFDu3Jo1a+KWW25ppDuh0EoLviMAAAAAAAAAAAAAAAAApFkmkyRFi11F+p9RFQ899FAccMABdbpEp06dGlRCaWnpDsPBO1NeXp43btmyZTSVpOtw0p33t7/9bd750047LX7yk5/scO2//Mu/ZI+6dj2+7bbb8gLBv/nNb+L666+vY+WkgTAwAAAAAAAAAAAAAAAAANAgSRD4kEMOKeierVq1yhtv3LixTuu3nd9UYeDVq1fHqFGjYtq0aXnnk3MTJ06sc0fj2jryyCOjb9++MW/evOz4nXfeibfffjv233//JtmPpiMMDAAAAAAAAAAAQLO08cGfFWyvsq9/p2B7AQAAAFA7HTp0yBt/9NFHdVpfdX4SyG3Xrl00tr/97W8xfPjwmDt3bt75s846K+69997tuhs3RSB4axh4az3CwM2PPuUAAAAAAAAAAAAAAAAAQLPTpUuXyGQyufGKFSvqtH7ZsmW51x07dozddtutUet74YUXsmHcbYPA3/72t+M///M/mzwIvPUZVbVy5com35PGpzMwAAAAAAAAAAAAAADU0cY//Lyg+5WdcmlB9wMAaA5atmwZ3bp1i6VLl2bH7777bp3WV52/3377NWptDz74YJxxxhmxadOm3LkkuPzTn/40Lr/88iiUysrK7Z4ZzY8wMAAAAAAAAAAAAABQ0GCjUCMAANBYDj300FwYeMGCBVFRURElJSU7Xbd8+fJYtWpV3nUay7333hvnn39+tpatysrKst2ATz311Dpfb82aNdkuxsnRuXPn6NOnT63XJvdZ1V577VXn/Sm+nf83GgAAAAAAAAAAAAAAAAA+SzIZR22OFDjyyCNzr9evXx9vvvlmrda99NJLeeNBgwY1Sj0TJkyIb37zm3lB4I4dO8a0adPqFQR+7LHHol27dtkA8Be/+MW4/vrr67T+L3/5S+51EpLu169fnWug+ISBAQAAAAAAAAAAAAAAAIBm6YQTTsgbT506tVbrHn300bzxsGHDGlzLn/70p2xH4MrKyty5Hj16xMyZM2Pw4MH1uuYXvvCFvPHTTz8dW7ZsqdXaJBg9d+7c3HjAgAGx55571qsOiksYGAAAAAAAAAAAAAAAAABolpKQ7T777JMb33333fHJJ5/scM3KlStj0qRJufExxxwTPXv2bFAdy5YtizPPPDPKy8tz5w444IBsEDjp6ltf3bt3z+vm+/7778cf/vCHWq295ppr8oLJF1xwQb3roLiEgQEAAAAAAAAAAAAAAACAZqmkpCQuvvji3HjRokVx2WWX1Ti/oqIizj333Fi7dm3u3KWXXtrgOsaOHRvLly/Pjffaa6948skns2HehvrWt76VN7788suz4eMdGT9+fEyePDk33m+//eKMM85ocC0UhzAwAAAAAAAAAAAAAAAAANBsXXLJJdGjR4/c+Pbbb8+e27hxY9681atXx+jRo2Pq1Kl5XYFHjRpV7XXfeeedyGQyeUd1/vrXv8ZDDz2Ud+7ee++NXr16RWNIwsCHHnpobrxkyZL44he/GLNmzdpu7vr16+O73/1u/N//+39z55K6f/WrX0VZWVmj1EPhlRZhTwAAAAAAAAAAAAAAAACARtG6deu4//77Y9iwYbFhw4ZcIPiBBx6IESNGRNeuXWPx4sXxyCOPxLp163LrOnbsGBMnTmzw/uPGjdvu3D/90z/V61rnnHNOTJgwIe9caWlpPPjgg9ng8ooVK7LnFixYEP/4j/8YgwcPjoEDB0bLli3jb3/7W7Yb8Zo1a/KCwHfffXcMGTKkXvWQDsLAAAAAAAAAAAAAAAAAAFBVpuTTg5ql7PkcffTR8fDDD8cpp5wSa9euzZ5buXLldsHarZKA8BNPPBH77rtvg/atrKyMxx9/PJragQceGM8880y2s/HcuXNz51944YXsUZ0999wzxo8fH2effXaT10fTStenDQAAAAAAAAAAAAAAAACgHoYOHRrz5s2LM844I8rKyqqd06pVqxg7dmy88cYb0a9fvwbv+cEHH8Tq1aujEA455JCYNWtW3HzzzdG9e/ca57Vr1y7OO++8bGhYEHjXoDMwAAAAAAAAAAAAAAAAALBL2HvvvWPixIlx1113xbPPPht///vfY9WqVdkuuX369Imjjjoq2rZtW6tr9ezZM9v5d0f22muvnc5pTEmY+Yorrojvfve78eabb8Yrr7wSK1asiM2bN2e7HSedjpMuybvvvnvBaqLpCQMDAAAAAAAAAAAAAAAAALuUNm3axIgRI2JXlclksp2Ck4NdX0mxCwAAAAAAAAAAAAAAAAAAAKonDAwAAAAAAAAAAAAAAAAAAClVWuwCAAAAAAAAAAAAAAAAACBVSjIRJXpx7vQZAQXh2wgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFKqtNgFAAAAAAAAAAAAAAAAAEC6ZCIymWIXkXKeDxSKzsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSwsAAAAAAAAAAAAAAAAAAAJBSpcUuAAAAAAAAAAAAAAAAAABSJVPy6UHNPB8oGJ82AAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIqdJiFwAAAMCuY+PUuwq6X9nwsQXdDwAAAAAAAAAAAACg0HQGBgAAAAAAAAAAAAAAAACAlNIZGAAAAAAAAAAAgDrZOPWugu1VNnxswfYCAAAAyMlkPj2omecDBaMzMAAAAAAAAAAAAAAAAAAApJTOwAAAAAAAAAAAAAB8Jm187O6C7VX2f75VsL0AAACAXYvOwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAAAAAAAAAAFKlJBNRohfnTp8RUBC+jQAAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKVKi10AAAAAAAAAAAAAAAAAAKRJZSaTPaiZ5wOFozMwAAAAAAAAAAAAAAAAAACklM7AAAAAAAAAAABAno1P/qpge5V95RsF2wuais8MAAAAANCUdAYGAAAAAAAAAAAAAAAAAICUEgYGAAAAAAAAAAAAAAAAAICUEgYGAAAAAAAAAAAAAAAAAICUKi12AQAAAAAAAAAAAAAAAACQLiURGb04d8zzgULxaQMAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQqLXYBAAAAAAAAAAAAAAAAAJAqmZJPD2rm+UDB+LQBAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKlRa7AAAAAAAAAAAAAAAAAABIk8pMcmSKXUbqnxFQGDoDAwAAAAAAAAAAAAAAAABASgkDAwAAAAAAAAAAAAAAAABASgkDAwAAAAAAAAAAAAAAAABASpUWuwAAAAAAAJq/DdN/XbC99vjSWQXbCwAAAAAAAAAAoNh0BgYAAAAAAAAAAAAAAAAAgJTSGRgAAAAAAAAAAAAAAAAAqsqUfHpQM88HCsanDQAAAAAAAAAAAAAAAAAAUkoYGAAAAAAAAAAAAAAAAAAAUkoYGAAAAAAAAAAAAAAAAAAAUkoYGAAAAAAAAAAAAAAAAAAAUkoYGAAAAAAAAAAAAAAAAAAAUqq02AUAAAAAAAAAAAAAAAAAQKpkMp8e1MzzgYLRGRgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFJKGBgAAAAAAAAAAAAAAAAAAFKqtNgFAAAAAAAAAAAAAAAAAECqZEoiSvTi3OkzAgrCpw0AAAAAAAAAAAAAAAAAAFJKZ2AAAAAAAAAAAIAd+HjGbwu2V6vjxhRsLwAAAAAAmgedgQEAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKVKi10AAAAAAAAAAACF9fGM3xZsr1bHjSnYXgAAAAAAjaUykxyZYpeR+mcEFIbOwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAAAAAgM+Oj5/7XUH3a/XFUwu6HwAAAEBj0xkYAAAAAAAAAAAAAAAAAABSSmdgAAAAAAAAAAAAAAAAAKgqU/LpQc08HygYnzYAAAAAAAAAAAAAAAAAAEgpnYEBAAAAAACAVPv4z78v6H6tjh1d0P0AAAAAAAAAYEd0BgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQqLXYBAAAAAAAAAAAAAAAAAJAqmZKozOjFuUOeDxSMMDAAAAAAQDP18cwHC7pfq6O/XtD9AAAAAAAAAAAAiBC9BwAAAAAAAAAAAAAAAACAlBIGBgAAAAAAAAAAAAAAAACAlBIGBgAAAAAAAAAAAAAAAACAlBIGBgAAAAAAAAAAAAAAAACAlCotdgEAAAAAAAAAAAAAAAAAkCqZzKcHNfN8oGB0BgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQqLXYBAAAAAAAAAAAAAE1h/Qt/KNherQefUrC9AAAAAPhs0RkYAAAAAAAAAAAAAAAAAABSShgYAAAAAAAAAAAAAAAAAABSqrTYBQAAAAAAAAAAAAAAAABAmlRmMlGZ0YtzZ88IKAzfRgAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAAAAAAAAAANIlE5HJFLuIlPN8oFB0BgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQSBgYAAAAAAAAAAAAAAAAAgJQqLXYBAAAAAAAAAAAAAAAAAJAqmZJPD2rm+UDB+LQBAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKCQMDAAAAAAAAAAAAAAAAAEBKlRa7AAAAAAAAAAAAAAAAAABIk8pMcmSKXUbqnxFQGDoDAwAAAAAAAAAAAAAAAABASgkDAwAAAAAAAAAAAAAAAABASgkDAwAAAAAAAAAAAAAAAABASgkDAwAAAAAAAAAAAAAAAABASgkDAwAAAAAAAAAAAAAAAABASpUWuwAAAAAAAAAAAAAAAAAASJVMyacHNfN8oGCEgQEAAAAAAAAAgFRa+5fHCrZX23/8PwXbCwAAAAAA6kIYGAA+Qwr5D8oT/mE5AAAAAAAAAAAAAAAANIw+3AAAAAAAAAAAAAAAAAAAkFLCwAAAAAAAAAAAAAAAAAAAkFKlxS4AAAAAAAAAAAAAAD7L1s56omB7tT3ixILtBQAAADQOYWAAAAAAAAAAAAAAAAAAqKIyMtmDmnk+UDglBdwLAAAAAAAAAAAAAAAAAACoA2FgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIqdJiFwAAfDZ99MqTBdtrzwFfKdheALAtf80DAAAAAAAAAAAAABpCGBgAAAAAAAAA2KUV8gfbEn60DQAAAAAAgMYkDAwAAAAAAAAAAAAAAAAAVVRmSrIHNfN8oHB82gAAAAAAAAAAAAAAAAAAIKWEgQEAAAAAAAAAAAAAAAAAIKVKi10AAAAAAAAAAACfTR/99U8F22vPw4cVbC8AAAAAAIDGpDMwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAFSVyURkShw7PDKRVgsWLIgrrrgijjjiiGjfvn20bNkyevToEccee2yMGzcu3n///SavoaKiIh555JH453/+5+jVq1e0bt062rZtG3379o1Ro0bFQw89FJs3b6739Z999tk477zzstdLrtuqVavo3bt3DB8+PCZOnBgff/xxo94PxVVa5P0BAAAAAAAAAAAAAAAAABqsvLw8rrrqqrjllluyYdyqlixZkj2ef/75+OEPfxi33nprjB07tknqWLhwYZx55pnx0ksvbffe/Pnzs8eDDz4Yhx56aEyaNCn7x9patmxZNgT82GOPVbtvciTvJc/hN7/5TTYATfOnMzAAAAAAAAAAAAAAAAAA0OyDwEnH3Z/+9KfbBYG3tWHDhrjwwgvjO9/5TqPX8cYbb8TRRx9dbRB4W6+//noMHDgw/vu//7tW1166dGk23FtdEHhbSfB5yJAh8Yc//KFW1ybdhIEBAAAAAAAAAAAAAAAAgGbt6quvjilTpuTGXbp0iTvvvDMbik3Cv3Pnzs12y919991zc2677ba47777Gq2GtWvXxsiRI2P58uW5c0OHDo0//elPsWrVqli9enU8/fTTMWzYsNz7SW0nn3xyNui7s7DzqaeeGm+99Vbu3IABA+Khhx6KlStXxrp16+KFF16I0047Lff+li1b4uyzz47XXnut0e6R4hAGBgAAAAAAAAAAAAAAAACarSTsOm7cuNy4V69eMXv27Bg7dmx07949ysrKom/fvnHDDTfEjBkzonXr1rm5l19+eaxZs6ZR6vi3f/u3WLhwYW588cUXx1NPPZUNBLdr1y4+97nPxZe//OV48skn47vf/W5u3vvvvx8/+MEPdnjtX/7ylzFz5szc+KSTTooXX3wx+8eOHTtm7+moo46K3/72tzF+/PjcvPXr18e3v/3tRrk/ikcYGAAAAAAAAAAAAAAAAABotq677rqoqKjIvi4pKYnJkydH165dq507aNCgvG7AScfeqkHi+kq681YN4SZde3/xi19EJpPZbm5y7uabb47hw4fnzv3Xf/1XzJ8/v9prb968Oa6//vrcOAk4/+Y3v4kWLVpUO/+SSy6Jiy66KDeePn16TJs2rd73RvEJAwMAAAAAAAAAAAAAAABAFZWRicqMY4dHbB9yLYZly5bFlClTcuMkYHvYYYftcM3o0aNj4MCBufG9994blZWVDaojCfNu2rQpN77qqquyweSabA0Eb7Vly5aYMGFCtXMfeeSRbPfgrb7zne/kdTeuzo9+9KPYY489cuN77rmn1vdC+ggDAwAAAAAAAAAAAAAAAADN0mOPPRbl5eW58ZgxY2q17vTTT8+9Xrp0acycObNBdVQNJLdp0yav629NDj744Ojfv39unHQ03tm1E6eddtpOr92hQ4f4yle+khs/+uijsXHjxp2uI52EgQEAAAAAAAAAAAAAAACAZmn69Ol54yFDhtRq3fHHH79dqLi+kpDtiy++mBsPHjw4WrZsWec6Fi5cGAsWLNjhPR544IHx+c9/vs7XXrduXTz33HO1Wkf6CAMDAAAAAAAAAAAAAAAAAM3Sq6++mnvduXPn6NatW63WHXLIIVFaWpobz5o1q941zJ07NzZv3pwbV+32uzPbzt22jlWrVsW7777bJNem+RAG3gUlyf8rrrgijjjiiGjfvn32FwR69OgRxx57bIwbNy7ef//9Jq+hoqIiHnnkkfjnf/7n6NWrV7Ru3Tratm0bffv2jVGjRsVDDz2U9+UGAAAAAAAAAAAAAAAAAHVRWVkZ8+fPz4179+5d67VJEDjJ3W311ltv1buOefPm5Y3rUkeSv6tq2zqa8to0H/8bW6fZKy8vj6uuuipuueWWbBi3qiVLlmSP559/Pn74wx/GrbfeGmPHjm2SOpJW5GeeeWa89NJL272XfLEmx4MPPhiHHnpoTJo0KftHAAAAAAAAAAAAAAAAAKiLpGvupk2bcuO99967Tuu7du0aixYtyr6u2n23rt577728cV3qSGqoats6mvLaNB/CwLtQEDjpuDtlypSdzt2wYUNceOGF2VDuz372s0at44033ogvfelLsXz58p3Off3112PgwIExffr0GDRoUKPWAQAAAAAAAAAAAAAAAFBvmZKozJQUu4p02+b5JE0m66pTp07RuXPnepewbY6tQ4cOdVrfvn37vIze2rVro23btgWto2oNiQ8//LDRrt2iRYto3bp1rF+/vtpr03z4NtpFXH311XlB4C5dusSdd96Z7QachH/nzp2b7Rq8++675+bcdtttcd999zVaDckX3ciRI/O+XIYOHRp/+tOfsr+wsHr16nj66adj2LBhufeT2k4++eRYunRpo9UBAAAAAAAAAAAAAAAAQGEl2bJDDz20Tscdd9zRoD3XrVuXN65rkLdNmzbbZeQKXcfOamjMe6zv/VF8wsC7gNdeey3GjRuXG/fq1Stmz54dY8eOje7du0dZWVn07ds3brjhhpgxY0Y2yb/V5ZdfHmvWrGmUOv7t3/4t79cbLr744njqqaeygeB27drF5z73ufjyl78cTz75ZHz3u9/NzXv//ffjBz/4QaPUAAAAAAAAAAAAAAAAAMBnw6ZNm7brhFsX287fvHlzwevYWQ2NeY/1vT+KTxh4F3DddddFRUVF9nVJSUlMnjw5unbtWu3cQYMG5XUDTjr2Vg0S19fKlStj/PjxufGAAQPiF7/4RWQyme3mJuduvvnmGD58eO7cf/3Xf8X8+fMbXAcAAAAAAAAAAAAAAAAAnw1btmzJGyf5urrYdv7WnF4h69hZDY15j/W9P4qvtNgF0DDLli2LKVOm5MZJwPawww7b4ZrRo0fHwIED4+WXX86O77333mxX3+qCu7WVhHmr/sLAVVddtcMvla2B4KlTp+a+kCZMmBA//vGP610DAAAAAAAAAAAAAAAAAMXx0EMPxQEHHFCnNZ06dWrQnqWlpTsMzu5MeXl53rhly5YFr2NnNTTmPdb3/ig+YeBm7rHHHsv7MI4ZM6ZW604//fRcGHjp0qUxc+bMOOaYY+pdR9VAcps2bfK6/tbk4IMPjv79+8fs2bOz46SjsTAwAAAAAAAAAAAAAAAAQPOTBIEPOeSQgu7ZqlWrvPHGjRvrtH7b+fUNyzakjp3V0Jj3KAzcfNWtHzSpM3369LzxkCFDarXu+OOP3y5UXF/Jl8GLL76YGw8ePLjWXwpV61i4cGEsWLCg3nUAAAAAAAAAAAAAAAAANIpMxlGbo8g6dOiQN/7oo4/qtL7q/JKSkmjXrl3B69h2bseOHRvt2om1a9fWeG2aD2HgZu7VV1/Nve7cuXN069atVuuSX1io2h581qxZ9a5h7ty5sXnz5tw46fZbW9vObUgdAAAAAAAAAAAAAAAAAHx2dOnSJTJVQskrVqyo0/ply5blBWV32223etXRtWvXvHFd6qhaw9acYGNd+8MPP8zL/m17bZoPYeBmrLKyMubPn58b9+7du9ZrkyBwjx49cuO33nqr3nXMmzcvb1yXOnr16pU3bkgdAAAAAAAAAAAAAAAAAHx2tGzZMq/B5rvvvlun9VXn77fffvWuY9u1dalj27nbXqspr03zIQzcjK1atSo2bdqUG++99951Wl/1FwHq+iVX1XvvvZc3rksd2/4qQUPqAAAAAAAAAAAAAAAAAOCz5dBDD829XrBgQVRUVNRq3fLly7MZvequ05AaEnPnzq13s85tr5U05GzVqlWTXJvmo7TYBVB/yZdNVR06dKjT+vbt2+del5eXx9q1a6Nt27YFraNqDVvbjjdUUk9d27kvXLiwwfsCAAAAAAAAAAAAAAAAUFhHHnlkPPXUU9nX69evjzfffLNWodeXXnopbzxo0KB615B0J95nn31iyZIl2fFf/vKXWq+tWsfuu+8ehx9+eN77u+22WwwYMCD+/Oc/Z8ezZs2KysrKyGQydbp2Q++R4hIGbsbWrVuXN65rkLdNmzZ54/qGgRtSR3U1NNQdd9wR1113XYOvAwAAAABA4/nw1U//gVQhdPjCsQXbCwAAAAAAAAAorhNOOCF+9KMf5cZTp06tVRj40UcfzRsPGzaswXX86le/yr7+61//Gu+99142JLwjGzdujGnTpuXGgwcPjtatW1d77a1h4JUrV8bLL7+cDUHvTPIsturZs2f07t27TvdEemQqkwg4zdLMmTPjmGOOyY2///3vx4033ljr9WeddVZMnDgxN37nnXdi3333rXMd559/ftxzzz258fz58+PAAw+s1dotW7ZEaen/ZtKPP/74eOaZZ6Ihrr322gaHgV9//fU45JBDGnQNPlvmv/3pr3YUSp/996n2/AtzGx6or4vBB9Uc/r/qV5sKVseN32hZ43tvLlxasDoOPmDvGt975JXyKKSvDfB7H7W18O2/FWyvA/bfr8b3vvPv+T+u0ZR+dkn+j3FUdfIlb0Uh/fHfa/4fEuff+EHB6viPqzrW+N7F41YXrI7bv9uuxveO+dqMgtXx/CPH1fjegrf/HoV04P49Uv/XvD/NKdxf84b1q/mveYsXzi9YHfse0CfSbtncVwq6X5eDBkTa3fO//z9Rk/vml2t+7/f/XVGwOkYPKqnxvffmzY5C6ta3f43vLZ3/asHq2LvPF2p8752FCwpWR88DDkz98/jb2wujkPbb/4Bqz788b01B6xjY93ORdm8vWlSwvfbv1avG9377QmH/b9Uxg3f+K54U/u8DdvT3AE+/Wri/Txz6hZr/PtHfF23vf95aWbC9Duu9V8H2au7S8tfexKK33y5YHb3237/G92a88XHB6jjukFapeB47eyZpseLNlwu2V6eDBxZsr+bujYXvFXS/Qw7olvp/NpGWH+J4d8HrBauj+4E7/5d6im35m7MKul/ng48o6H7N2bTXNhZ0vy//Q1lB9wMAAACozhtvvJEXlpOl4LNu28/E83/8dfQ9oOZ/f4SIeQsXxTEnn1X075GKiops0HVrV95evXrF3Llzs112a5IEapN5W5tbJjm9rWHb+vrTn/6UDe1udfXVV8f111+/wzW//OUvY+zYsblxktP7xje+sd28BQsWRJ8+//vv8J5xxhl52cDqPPnkk3HiiSfmxj/4wQ/yQtM0LzX/W7GkXhKkraqkpG5/Oredn3zpFbqOxqoBAAAAAAAAAAAAAAAAgM+eJKN28cUX58aLFi2Kyy67rMb5SYbt3HPPzQWBE5deemmD6xg6dGgcfPDBufG4ceOyDUFrkjTlvPLKK3PjLl26xJgxY6qdmzTvrBrsvf/+++P3v/99jddevnx5XHDBBblxWVlZ3pjmRxi4GavaUbe6UO7OlJfnd6ls2bJlwetorBqquuiii7K/IlGX46GHHmrwvgAAAAAAAAAAAAAAAAAU3iWXXBI9evTIjW+//fbsuY0bN+bNW716dYwePTqmTp2aO5d0BR41alS1133nnXcik8nkHTVJ3vvJT36SG2/atCm+9rWvxcMPP7zd3CQknISHk3q2SroIt27dusbr33jjjbksX2VlZZx99tnZTsLbSroif+lLX4rFixfnzl1++eXRvXv3Gq9N+uWnOGlWWrVqlTfe9otpZ7adX98gbkPqaKwaqurcuXP2AAAAAAAAAAAAAAAAAGDXl4Rok265w4YNiw0bNuQCwQ888ECMGDEiunbtmg3HPvLII7Fu3brcuo4dO8bEiRMbrY4k/Puv//qvMX78+Ox41apVcdJJJ8WAAQPi6KOPjt122y1eeeWVeO655/LWJWHkb37zmzu89mGHHRY33XRTNti7NZt3/vnnZzsQf/nLX87m/JLGmU899VS2+/FWRx11VFxzzTWNdo8UhzBwM9ahQ4e88UcffVSn9VXnJ63Q27VrV/A6tp2bfHkCAAAAAAAA0DAdvnBssUsAAAAAAAAoqCRsm3ThPeWUU2Lt2rXZcytXrowJEyZUOz8JCD/xxBOx7777NmodP//5z2PLli1xxx135M4lAeDkqM7IkSNrHUi+7LLL4pNPPomrr746F/idP39+9qjO4MGDs12QW7RoUa97IT1Kil0A9delS5e8tuIrVqyo0/ply5blhXCTXxWoj+RLr6q61FG1hoSOvgAAAAAAAAAAAAAAAADUx9ChQ2PevHlxxhlnRFlZWbVzkg66Y8eOjTfeeCP69evX6DUkmb+kK/Hjjz8e/fv3r3He/vvvH/fcc0/88Y9/jJYtW9b6+ldeeWW8+OKL8cUvfjEvX1hVt27d4uabb44ZM2bUu4ko6aIzcDOWfMCTD+XSpUuz43fffbdO66vO32+//epdx7Zr61LHtnMbUgcAAAAAAAAAAAAAAABAY6iMTPagZml9PnvvvXe20+5dd90Vzz77bPz973+PVatWxZ577hl9+vSJo446Ktq2bVura/Xs2TMqKyvrVceJJ56YPd5+++146aWX4r333ovNmzdHp06dYsCAAdkgck1h3p0ZOHBgNuibZAuff/757B83bNgQHTp0yF73iCOOiNJS8dFdiT+bzdyhhx6aCwMvWLAg29q7pGTnDZ+XL1+e/QKrep2G1FDV3Llza702+ZWFHV0LAAAAAAAAAAAAAAAAAOqqTZs2MWLEiGKXke0AnBxNFXw+9dRTm+TapMvOU6Ok2pFHHpl7vX79+njzzTdrtS75JYGqBg0aVO8aku7E++yzT278l7/8pdZrq9ax++67x+GHH17vOgAAAAAAAAAAAAAAAAAAdjXCwM3cCSeckDeeOnVqrdY9+uijeeNhw4Y1Wh1//etfsy3Ld2bjxo0xbdq03Hjw4MHRunXrBtUBAAAAAAAAAAAAAAAAALArEQZu5pIAbdWuvHfffXd88sknO1yzcuXKmDRpUm58zDHHRM+ePRtUx2mnnZZ7XVlZGbfffvtO1/znf/5nrFmzJjc+88wzG1QDAAAAAAAAAAAAAAAAAMCuRhi4mSspKYmLL744N160aFFcdtllNc6vqKiIc889N9auXZs7d+mllza4jqFDh8bBBx+cG48bNy5mzpxZ4/z58+fHlVdemRt36dIlxowZ0+A6AAAAAAAAAAAAAAAAAAB2JcLAu4BLLrkkevTokRsnXXmTcxs3bsybt3r16hg9enRMnTo1ryvwqFGjqr3uO++8E5lMJu+oSfLeT37yk9x406ZN8bWvfS0efvjh7eYmIeEkPJzUs9X1118frVu3rsNdAwAAAAAAAAAAAAAAADSNykyJoxYHUBilBdqHJpSEaO+///4YNmxYbNiwIRcIfuCBB2LEiBHRtWvXWLx4cTzyyCOxbt263LqOHTvGxIkTG62OJPz7r//6rzF+/PjseNWqVXHSSSfFgAED4uijj47ddtstXnnllXjuuefy1iVh5G9+85uNVgcAAAAAAAAAAAAAAAAAwK5CGHgXkYRtky68p5xySqxduzZ7buXKlTFhwoRq5ycB4SeeeCL23XffRq3j5z//eWzZsiXuuOOO3LkkAJwc1Rk5cmSjBpIBAAAAAAAAAAAAAAAAAHYl+nDvQoYO/f/s3XmYFdW5L+Cvm4ZGEAIyiiKTiCgBlBzFITjEMXqMaNTjAFGTY4gmRhMTr/FEjZrBOCXX8fiYOGuugnEAnJEoxwkHcEBQEaIgAgIiKjP7PlW5vW830NhND7u6+32fZ6XXql1V+6tVDf6TH98BMX369DjxxBOjZcuWGz2nVatWMWrUqHjrrbdi0KBBtV5DUVFR2pX4kUceicGDB1d6Xp8+feLmm2+Ov//971FaWlrrdQAAAAAAAAAAAAAAAAAANAY6Azcy3bp1Szvt3njjjTFx4sT44IMPYsmSJdG2bdvo169f7LHHHtGmTZsq3atnz56Ry+U2q45DDjkkHTNnzowXX3wx5s2bF6tXr45OnTrFkCFD0iByEhwGAAAAAAAAAAAAAAAAAKBywsCN1JZbbhmHH354octIOwAnAwAAAAAAAAAAAAAAAACA6hMGBgAAAAAAAAAAAAAAAIDyior+Naic/YF6U1x/XwUAAAAAAAAAAAAAAAAAAFSHMDAAAAAAAAAAAAAAAAAAAGSUMDAAAAAAAAAAAAAAAAAAAGRUSTQgK1asiEcffTQmTJgQc+fOjS+++CLWrFkT69atq9Z9ioqK4qmnnqqzOgEAAAAAAAAAAAAAAAAAqF8rGmkOtcGEgceMGRM//elPY968eTW6Ty6XS18CAAAAAAAAAAAAAAAAAACNw5hGnENtEGHgu+++O0aOHJlPXmdtEwEAAAAAAAAAAAAAAABoPHJRFLkoLnQZmd8jyIq7G3kONfNh4KVLl6ZJ7OQFlG1+Waq6ffv20bp16ygu9pcqAAAAAAAAAAAAAAAAAEBTs7QJ5FAzHwa+7bbbYtGiRemmJ5vft2/f+P3vfx8HHXRQbLnlloUuDwAAAAAAAAAAAAAAAACAArmtCeRQMx8Gfvjhh9OfyQvo1atXPPfcc9GhQ4dClwUAAAAAAAAAAAAAAAAAQIE93ARyqJnvazx9+vT0Z5LI/q//+q9G9wIAAAAAAAAAAAAAAAAAANg805tADjXzYeCFCxfm54ccckhBawEAAAAAAAAAAAAAAAAAIDsWNoEcaklkXLt27WLBggXpvFOnToUuBwAAAAAAAGjCOu20W6FLAAAAAAAAoB7koihyRUWFLiPzewRZ0K4J5FAz3xl42223zc/nz59f0FoAAAAAAAAAAAAAAAAAAMiObZtADjXzYeCDDz44P3/qqacKWgsAAAAAAAAAAAAAAAAAANlxcBPIoWY+DHzSSSdFs2bN0vnll18ea9asKXRJAAAAAAAAAAAAAAAAAABkwElNIIea+TBw//7942c/+1nkcrmYNm1ajBo1KtatW1fosgAAAAAAAAAAAAAAAAAAKLD+TSCHWhINwCWXXBLvvvtuPPDAA3HLLbfEa6+9FmeeeWbsu+++0aNHj0KXBwAAAAAAAADwlTrv9I1ClwAAAAAAANAoXdLIc6iZDwNfcMEF+WT2P/7xj1iyZEn6Ek499dT0eMuWLaNt27axxRZbVPmeRUVFMXPmzDqrGQAAAAAAAAAAAAAAAIAGrKg4ckXFha4i2+wPGXFBE8ihZj4MfOmll6abVqZsnrRrTixfvjwd1VH+fgAAAAAANB5d+g8pdAkAAAAAAAAAAEA9urQJ5FAzHwYuU7bpAAAAAABA1QhHAwAAAAAAAADQVOQacQ4182HgYcOGZS5BDQAAAAAAAAAAAAAAAABA4Q1rAjnUzIeBJ06cWOgSAAAAaGB0wAMAAAAAAAAAAACApmFiE8ihFhe6AAAAAAAAAAAAAAAAAAAAoIF2BgYAAAAAAAAAAAAAAACA+pSLonRQOfsD9UdnYAAAAAAAAAAAAAAAAAAAyKgG2Rl41apVcf/998eECRPipZdeigULFsTixYujWbNmseWWW0aPHj1ip512iv322y+OPvro9BgAAAAAAAAAAAAAAAAAAI3fqkaWQ21wYeDrrrsufve738XHH3+crnO5XIXPly9fHgsXLoxXXnkl7rjjjjjzzDPjnHPOifPOOy9KShrc4wIAAAAAAAAAAAAAAAAA0IRzqMXRQHz55ZdpujrZ1Hnz5uU3v6ioKB3l52Xr5Jxly5bFRRddFN/61rfi008/LegzAAAAAAAAAAAAAAAAAABQ+75sxDnUbEaU15Ns5vHHHx8PP/xwuk42OTmWjBYtWqTtmNu1axdr165NN/qf//xnOi9/7qRJk2L48OHx5JNPpm2cAQAAAAAAAAAAAAAAAABo+HKNPIfaIDoDX3nllekLKJ+4HjFiRDzzzDPx2WefxYwZM+LFF1+Ml19+Od577700hT1hwoQ44YQT8ucnLyI5P7kXAAAAAAAAAAAAAAAAAFQml2TSioqNTY5/dVaFLLiykedQM98ZONnk3//+9/mN7NChQ4wZMyaGDRtW6TUtW7aMfffdNx2jRo2Ko446KhYtWpRen9zr9NNPjy233LJenwMAAADIjq13HFzoEgAAAAAAAAAAAACoBZ81gRxq5jsD33PPPbFkyZJ0A0tKSmLs2LGbfAHr23vvvdM0d9KSOXmRyUv929/+Vqc1AwAAAAAAAAAAAAAAAABQ9+5pAjnUzIeBH3vssfRnsoE/+MEPYvfdd6/2PZJrkmuTF5kYP358rdcJAAAAAAAAAAAAAAAAAED9eqwJ5FAzHwZ+44038vORI0du9n3KXztlypQa1wUAAAAAAAAAAAAAAAAAQGG90QRyqCWRcQsWLMjPd955582+T9m1SSp7/vz5tVIbAAAAALWrW7+BhS4BAAAAAAAAAAAAaEAWNIEcaubDwKtXr87PW7Rosdn3ad68eS1VBAAAAAAAAAAAAAAAAEBjlisqSgeVsz9kxeomkEMtjozr0KFDfv7+++9v9n1mzZqV/iwqKoqOHTvWSm0AAAAAAAAAAAAAAAAAABROhyaQQ818Z+Add9wx5s6dm84feuih6N+//2bd54EHHsjPe/fuXWv1AQAAANREt34DC10CAAAAAAAAAAAAQIO1YxPIoWa+M/C+++6b/szlcnH55ZfHokWLqn2PhQsXxhVXXJFff+tb36rVGgEAAAAAAAAAAAAAAAAAqH/7NoEcaubDwCNHjoySkpK0rfLixYvjsMMOiyVLllT5+uTcww8/PH9NcXFxHHfccXVYMQAAAAAAAAAAAAAAAAAA9WFkE8ihZj4M3L179xgxYkSayE5exEsvvRQDBw6MO+64I1atWlXpdStXrozbbrstPffll19OjyXXn3DCCdG3b996fAIAAAAAAAAAAAAAAAAAAOpC9yaQQy2JBuDqq6+OJ598MubMmZNu5Ny5c+Pkk0+OM844I4YMGRI77LBDtGvXLj33008/jRkzZsQrr7wSX375Zf7lJXr27JneCwAAAAAAAAAAAAAAAAAqk4uidFA5+0OWXN3Ic6gNIgzctm3beOqpp+Kggw6K2bNnp5uabO7nn38ezzzzTDrWl3yeKDt3m222iYcffji22mqrAjwBAAAAAAAAAAAAAAAAAAB1oW0jz6EWRwOx/fbbx3PPPRdHH310/lhZ0npjyj5LXsDhhx8er776auy00071UisAAAAAAAAAAAAAAAAAAPVn+0acQ20wYeBE165d47777ouXX345fvKTn0S/fv3STd7YSD4bNWpUvPbaa/HQQw9Fp06dCl0+AAAAAAAAAAAAAAAAAAB1pGsjzaGWRAO0yy67pCOxbNmyWLhwYSxatCjd/Pbt20eXLl3Sls4AAAAAAAAAAAAAAAAAADQtuzSyHGqDDAOX16ZNm3T07t270KUAAAAAAAAAAOVsu8OAQpcAAAAAAABAE9emEeRQG3wYGAAAAAAAAAAAAAAAAABqU66oOB1Uzv5A/fGnDQAAAAAAAAAAAAAAAAAAMqrgnYEvvvjiCusLLrhgk5/XlvW/BwAAAAAAAAAAAAAAAACAbLlYDrXwYeCLLrooioqKKt2c9T9vjC8BAAAAAAAAAAAAAAAAAIANXSSHGsWREblcrlF9DwAAAAAAAAAAAAAAAAAAtSPXhHOoBe8MXJWNyeLGAQAAAAAAAAAAAAAAAABQ93JNPIda8DDwrFmzavQ5AAAAAAAAAAAAAAAAANS2XBQVugRADjUbYeAePXrU6HMAAAAAAAAAAAAAAAAAABqnHnKoUVzoAgAAAAAAAAAAAAAAAAAAgIx2Bv4qzzzzTH4+bNiwzb7PypUr429/+1u8/vrr6frKK6+slfoAAAAAAAAAAAAAAAAAACiMZ5pADjXzYeB99903ioqK0rFmzZrNvs/q1avjlFNOSe+z9dZbZ+olAAAAAAAAAAAAAAAAAABQffs2gRxq5sPAiVwuV+N7lJaW5u+1aNGiWqgKAAAAAAAAAAAAAAAAAIBCyzXyHGqDCAPXhqeeeio/b968eUFrAQAAAAAAAAAAAAAAACC7ckXF6aBy9ofG5qkM51ALHgZ+5ZVX4rrrrqvSuaeeemq1779u3bo0gT1hwoS0NXOSyO7WrdtmVAoAAAAAAAAAAAAAAAAAQH16RQ618GHgwYMHpy/izTff3OR5yebddtttNW7xnLyIQw89dLPvAwAAAAAAAAAAAAAAAABA/RgshxoF78PdrFmzKieyayLZ/ETXrl3j3HPPrfPvAwAAAAAAAAAAAAAAAACgZprJoRY+DJzYe++946STTkpT0+uP8jb2+VeN5CV/7Wtfix133DFOOeWUeOmll9IXAQAAAAAAAAAAAAAAAABA9u3dxHOoJZERSevljbVfLi4uzieq165dW4DKAAAAAAAAAAAAAAAAAAAopNuacA41M2FgAAAANl+P7fsVugQAAAAAAAAAAACARiMXRemgcvYH6k/mw8DDhg1L09gAAAAAAAAAAAAAAAAAANDUcqiZDwNPnDix0CUAAAAAAAAAAAAAAAAAAJBBE5tADrW40AUAAAAAAAAAAAAAAAAAAAANtDNwbXvvvffiv//7v+Pyyy8vdCkAAAAAmdFz+x0KXQIAAAAAAAAAAABAwb2XwRxqgwoDf/HFFzF27Nh4/fXXY8mSJbFq1arI5XLpWF9ybO3atek5y5cvj6VLl8b7778fc+fOTT/P0ksAAAAAAAAAAAAAAAAAAKBmvmikOdQGEwZOUtTnnntuLFu2bLPvUfayioqKarEyAAAAAAAAAAAAAAAAABqTXBRHrqi40GVkfo8gS/67EedQG0QY+C9/+Uv86Ec/yq/Lb2L5NPbGNndjaW0AAAAAAAAAAAAAAAAAABqHvzTyHGrmw8Cff/55msQuv8nrb2xlx8s+S44nP/v27Rv77bdfHH300fVSOwAAAAAAAAAAAAAAAAAAdefzJpBDzXwY+I477ojFixfnN3r77bdPX8quu+4aW265ZYwYMSJefPHFaN68eUyePDlatmwZn332Wbz77rvx97//PUaPHp1/Eck5V111VWyxxRaFfiwAAAAAAAD+n159ti90CQAAAAAAAABAA3VHE8ihZj4M/Pjjj6c/k03s1q1bvPDCC9G+ffv859/+9rfTl7BmzZqYOXNmDB8+PD3+jW98I44//vh44IEHYuTIkfHFF1/EtGnT4oILLojLL7+8YM8DAAAAQPYJJAEAAAAAAAAAAEDD8HgTyKEWR8a99dZb6c8kVX322WdXeAGJoUOH5udPP/30BtcfeeSRcd1116UvMRnXXnttzJs3rx4qBwAAAAAAAAAAAAAAAACgLr3VBHKomQ8Df/zxx/n5wQcfvMHnAwcOzM9feumljd4jaeE8bNiwdL5q1aq455576qRWAAAAAAAAAAAAAAAAABq+XDqKjE0OyIaPm0AONfNh4OXLl+fnvXv33uDzLl26pCntJG395ptvVnqfU045JT9//vnn66BSAAAAAAAAAAAAAAAAAADq0/ImkEMtiYxr1apVLFu2LJ1vscUWGz0neTmvvPJK+sI++OCD2G677TY4Z4899tig5TMAAAAAAABQud59+hS6BAAAAAAAAACIpp5DzXwYuEOHDvmXkPxs27btBuf07NkzfQmJGTNmbPQlbLvttvn5ggUL6rRmAAAAAAAAGibhVwAAAAAAAABoWDo0gRxqcWTcNttsk59Pnz59o+f0Kfd/yqisRXOzZs3Sn0kb57KXCgAAAAAAAAAAAAAAAABAw7VNE8ihZj4MvPfee+fnY8aM2eg5O+ywQ37+/PPPb/Scd999Nz8vLS2t1RoBAAAAAAAAAAAAAAAAAKh/ezeBHGpJZNz+++8fl112WZqkvvbaa+Owww6LYcOGVThn1113TX8m5zz66KPxySefRMeOHSucc+edd+bnXbp0qafqAQAAAIDa1Kd370KXAAAAAAAAAABAE5ArKkoHlbM/ZMX+TSCHmvnOwAceeGD0798/ioqKYvny5en6jDPOiNdeey1/zuDBg6N79+7pOV988UUcd9xxsXjx4vznf/vb3+Lqq69OP0/GN77xjQI9DQAAAAAAAAAAAAAAAAAAteXAJpBDzXwYOHHppZemaetkA1evXh033nhjHHvssRXO+c///M/0nMTEiRNju+22i6FDh8b2228fJ554Ynpd2efrXwsAAAAAAAAAAAAAAAAAQMN0aSPPoTaIMPDw4cPjkksuyb+IRK9evSqc87Of/azCsS+//DJeeumleP/99/PXJWO33XaLI488st6fAQAAAAAAAAAAAAAAAACA2je8kedQG0QYOHH++efH+PHjo2/fvumm9u7du8LnrVq1irFjx0a3bt0qbHrZKLvm3nvvzb9IAAAAAAAAAAAAAAAAAAAavvMbcQ61wYSBE4ccckhMnz49Xn311Tj11FM3+Lx///7x+uuvx1lnnRUdO3ZMNz4ZnTt3ThPbkydPju7duxekdgAAAAAAAAAAAAAAAAAA6s4hjTSHWhIN0ODBgyv9rH379nHVVVelY8mSJelL2Gqrreq1PgAAAAAAAAAAAAAAAAAasFzSJTRbnUEzx/6QYYMbWQ61QYaBqyp5IQAAAAAAAAAAAAAAAAAA0FBzqMWFLgAAAAAAAAAAAAAAAAAAANg4YWAAAAAAAAAAAAAAAAAAAMiokkIXcPHFF1dYX3DBBZv8vLas/z0AQNO0fZ9ehS4BAAAAAAAAAAAAAACASlwsh1r4MPBFF10URUVFlW7O+p83xpcAAAAAAAAAAAAAAAAAAMCGLpJDLXwYuEwul6uTzS7U9wAAAAAAAAAAAAAAAADQMOWiOB1Uzv5Q33JNOIeaiTBwsjE1+RwAAAAAAAAAAAAAAAAAgMYp18RzqAUPA8+aNatGnwMAAAAAAAAAAAAAAAAA0DjNkkMtfBi4R48eNfocAAAAAAAAAAAAAAAAAIDGqYccahQXugAAAAAAAAAAAAAAAAAAAKCBhoH/+te/xueff17oMgAAAAAAAAAAAAAAAABoInJRZFRhQBb8tQnkUDMfBv7BD34QXbt2jZEjR8aTTz5Z6HIAAAAAAAAAAAAAAAAAAMiIHzSBHGpJNADLly+Pu+66Kx3bbLNNjBgxIn0p/fr1K3RpAADQpOzQZ7tClwAAAAAAAAAAAAAAAE0qh5r5zsDl5XK5mDNnTvzhD3+InXbaKYYOHRo33nhjfPrpp4UuDQAAAAAAAAAAAAAAAACAAso10hxq5sPAt956axx44IFRXFy8wQuZPHlynHHGGbH11lvHMcccE2PHjo1169YVrFYAAAAAAAAAAAAAAAAAAOrPrU0gh5r5MHDShvnRRx9Nk9hXXXVVDBkyJH0B5a1cuTLuv//++M53vpO2bz7nnHPi9ddfL1jNAAAAAAAAAAAAAAAAAADUvZFNIIea+TBwmS5dusRZZ52VprCnT58e559/fvTq1avCC0nm8+fPj6uvvjp22WWXdPz5z3+OhQsXFrR2AAAAAAAAAAAAAAAAABqOJLWWiyJjkwOypUsjzqGWRAO0ww47xCWXXJKO559/Pu68886477774pNPPqnwQpJU9s9+9rP45S9/GQcffHB873vfiyOOOCKaN29e0PqBxqdfn+6FLgEAAAAAAAAAAAAAAACAaHw51AbTGbgye+yxR1x33XXx0UcfxcMPPxzHHXdctGzZMv8ikrF69eoYN25cHHvssbH11lvHj3/840KXDQAAAAAAAAAAAAAAAABAHdujEeRQG3wYuExJSUkcdthhcc8998SCBQvijjvuiH//93/f4IUsXrw4brjhhkKXCwAAAAAAAAAAAAAAAABAPSlpwDnURhMGLq9169Zx4oknxr333ht//etfo3v37lFUVJQOAAAAAAAAAAAAAAAAAACartYNLIdaEo3MZ599Fg888EA6nnjiifjyyy8LXRIAAAAAAAAAAAAAAAAAABnwWQPMoTaKMPCqVavi4YcfjrvvvjvGjx+frhNJO+byOnToEMcff3x873vfK1ClAAAAAAAAAAAAAAAAAGRdLorSQeXsDw3JqgaeQ22wYeBkg5988sl04//+97/HsmXL8seTNsxlL6CkpCQOPfTQOPnkk+Pwww+P5s2bF7hyAAAAAAAAAAAAAAAAAADqUq4R5VAbXBj4xRdfTDf+3nvvjQULFqTHyjY82fyy9aBBg9Lk9YknnhidOnUqaM0AAAAAAAAAAAAAAAAAANS9FxthDrVBhIGnT58ed911V9xzzz0xa9asjW58ItnsE044Id385CUAAAAAAAAAAAAAAAAAANC4TW/kOdTMh4F32WWXeP311yvd+KTdctJ2Odn4b3/729GsWbOC1QoAAAAAAAAAAAAAAAAAQP3ZpQnkUDMfBp46dWp+05OfyYtIxpAhQ+Lkk0+O448/PrbaaqtClwkAAAAAAAAAAAAAAAAAQD2b2gRyqJkPA5dJNr5r165x0kknpZu/0047FbokAAAAAAAAAAAAAAAAABqhXBSlg8rZH7Im14hzqJkPA7do0SKOPPLItP3ywQcfHMXFxYUuCQAAAAAAAAAAAAAAAACADGjRBHKomQ8Dz58/P772ta8VugwAAAAAAAAAAAAAAAAAADJmfhPIoWY+3tzYXwAAAAAAAAAAAAAAAAAAAJvna00gh5r5zsCbsnjx4njxxRdj3rx56Xz58uXx61//Ov/55MmTY9ddd41mzZoVtE4AAAAAAAAAmoadtu9W6BIAAAAAAACARpZDbXBh4JUrV8Ztt90W119/fbz55puRy+UqfF7+JRx11FGxevXq+NWvfhVnnHFG5l8GALXP/+EGAAAAAAAAAAAAAAAAmo6VjTCH2qDCwEnC+thjj40PPvhgg81PFBUV5edr1qxJk9rr1q2Ls88+O8aMGROjR4+OTp061XPVAAAAAAAAAAAAAAAAADQsRZHL/f+8Ghtjf8ieyY00h1ocDcSDDz4Y3/zmN/MvoPyGl5+XSc5LXkDyWXL+pEmT4tBDD40vvviinisHAAAAAAAAAAAAAAAAAKAuPdiIc6gNojPwq6++GieeeGKsWrUqv+HdunWLb3/72zFo0KD48Y9/vME1W2yxRey7774xceLE/It47bXX4rzzzov//b//dwGeAgAAAAAAAIC6sPP2Wxe6BAAAAAAAAKCAXm3kOdQG0Rn49NNPjy+//DLdzObNm8e1114bs2fPjv/+7/9OP9uYrbfeOiZMmJAmudu1a5d/ETfccEN8+OGH9f4MAAAAAAAAAAAAAAAAAADUvtMbeQ4182HgRx55JF566aX8+q677ko3vlmzZlW6/t///d/j8ccfT19e8iKSls133HFHHVYMAAAAAAAAAAAAAAAAADQ2ixcvjssvvzy+9a1vRZcuXaJFixbpzyFDhsQ555wTb775Zr3UsXr16rjnnnvie9/7XvTv3z+22mqrNEPZsWPH+PrXvx6jRo2K8ePHV/u+Rx55ZJrD3JzxwgsvRKE80gRyqJkPAyeJ6kSygd/97nfj6KOPrvY9kj9IJ510UprITvzjH/+o9ToBAAAAAAAAAAAAAAAAgMbpzjvvjN69e8cvf/nLtJvsggUL0lBu8vPVV1+NK6+8Mg3iJiHU5cuX11kdDzzwQPTs2TNOOOGEuP3222P69OmxZMmSWLNmTSxatCgNJCfdcA877LAYNGhQvPbaa1W+99SpU6MherAJ5FAzHwaeNGlSfv6f//mfm32f73//+/n5tGnTalwXAAAAAAAAAAAAAAAAAI1TLoqMKoymIukGPGLEiFi6dOlXnnvDDTfE/vvvHytXrqz1Oi6++OIYPnx4fPTRR1U6//XXX48999wzH5bdlOTZZs+eHQ3RpCaQQ818GPjjjz/Oz3fdddfNvk/fvn3Tn0kqO2nFDQAAAAAAAAAAAAAAAACwKePHj49zzz03v27RokX86le/SsOiSQfgOXPmpAHgrl275s954YUX4rTTTqvVOu6444648MILKxw76qij4tFHH41PPvkkVq1aFXPnzo277767QhZzxYoVaRfhr+oQvH5X4KeffjrNY1Z1DB06NArl4yaQQ818GPjzzz/Pz9u2bbvZ92nTpk0tVQQAAAAAAAAAAAAAAAAANHZJkHbUqFFpODTRsmXLeOKJJ+K3v/1t9O/fP11vs8026TlTpkyJnXbaKX/t7bffHs8++2yt1JF07f35z3+eXxcXF6fh4DFjxsTBBx8cHTp0iObNm0e3bt3i+OOPjxdffLFCGPnLL7+MM844Y5PfkdRf3qBBg6Kh+LwJ5FAzHwbu2LFjfj5v3rzNvk+Srk8UFRWlv9gAAAAAAAAAAAAAAAAAAJW5+eab48MPP8yv//CHP8SwYcM2em6XLl1i7Nix0bp16/yxpINwbbjtttti4cKF+fX/+l//K0466aRKzy8pKUm7Fe+11175Y88//3xMmjSpSp2Bt9tuu2jfvn00FB2bQA4182HgHj165OcTJkzY7Pskra43dk8AAAAAAAAAAAAAAAAAgPXddNNNFQKnSQfgTenVq1eFDrxJ+HbGjBk1rmP06NH5edKN+Be/+MVXXpN0Dz7vvPMqHBs3blyVOgM3pK7ATSWHmvkw8AEHHJCfX3755bF27dpq32PlypVx1VVX5df77bdfrdUHAAAAAAAAAAAAAAAAADQus2bNijfeeCO/Hj58eJSWln7ldSeccEKF9X333VejOtatWxcvv/xyfj106NBo165dla7dc889K6zfeeedjZ63Zs2aeOuttxpsGPiAJpBDzXwY+JhjjklbKifefvvt+PGPf1yt63O5XJx66qnpH7wyRx11VK3XCQAAAAAAAAAAAAAAAEDjkIsiowqjMVu/w2xVw6EDBw6M9u3b59fjx4+vUR2LFi2Kfv36pZ2JEz179qzytUkX4fI+/fTTjZ6XdC9OwrANNQx8TBPIoWY+DDxgwIA47rjj0s0sa6t9xBFHpC/kq7z++utpovtvf/tbuk5e5mGHHRaDBw+u87oBAAAAAAAAAAAAAAAAgIYpySeWV9VcYpJjLB+mfe211zarU22ZTp06pfdYuHBhrFixIq6++uoqX5uEfNe/18ZMmTKlwrqhZTAHNIEcakk0AMkv56RJk2Lu3Lnpety4cenYfvvto1evXhXOPe+889Jf6hdffDGmTZuWHit7gVtttVX8+c9/LsATAAAAAAAAAAAAAAAAAAANxfTp0/PzJCDap0+fKl/bu3fvmDhxYjpPArxz5syJHj161Lim0tLSdFTV6NGjK6x33HHHjZ43derU/HzLLbdMnzUJyd5+++3pc8ycOTO+/PLLNEy8ww47pGHZk08+OTp06BBZcXUjz6E2iDBwly5dYuzYsXHQQQfFggUL0j84yca+++678d577+XPS4798Y9/zM8TZa2dW7duHffdd98GLw0AAAAAAAAAAAAAAAAAoLx58+bl5x07dowWLVpU+dquXbtWWNdWGLg6Fi1aFNdff32FY0m33K/qDJw86/Dhw+PBBx/c4LwkaJuMp59+Oi655JK46KKL4qyzzoos6NLIc6gNIgycGDhwYPoLddJJJ8WECRMqbHDZz/LKXlQydt5557j33nujf//+9V43AAAAAAAAAAAAAAAAADR25QOXVZV0mu3cuXNkURIoLZN0i62O9u3bV1gvXrw46tuZZ54ZS5Ysya9333332HXXXb+yM/Ds2bPT8VWWLl0aZ599drz22mvx17/+NZo1axaFNrAR51AbTBi4LA3/5JNPxrPPPhvXXntt+jKSdPrGbLHFFrHXXnvFD3/4wzjqqKM2+qIAAAAAAAAAAAAAAAAAgJo78sgjq33NhRdemHaX3Vzjxo1LO7/WlvJdbj///PP8vE2bNtW6z5ZbbllhvWzZsqhPf/rTn+Luu++ucOyyyy6rtANy+eBzmUMPPTRGjRqVBoiTwPYnn3wSkyZNimuuuSb9Web2229PuwlfeeWVkQVdG2kOtUGFgct885vfTEfinXfeSVtkJwn11atXp4n55BdrwIAB0bx580KXCgAAAAAAAAAAAAAAAEADk0tHdoOBWdmjQrvllltizJgxdRIGXrlyZX5e3azi+ucn2cf6cscdd8TPf/7zCsd++tOfxj777POVXYHLArI333xznHDCCRWOd+vWLY499th0XHHFFfHLX/4y7aibuOqqq+Kwww6L/fffP7Lim40sh9ogw8Dl7bDDDukAAAAAAAAAAAAAAAAAAKgNa9euzc+Li4urde36569bty7qKwh8yimnVPi+PffcMy6//PJKr0m6HifB3/fffz9mzZoVV199dRx//PGb/J5zzjknPv744wrdgC+44IJMhYEbWw61wYeBAQAAAAAAAAAAAAAAAIDCeuCBB2L77bev1jWdOnWKrCopKcl39C0fDK6KNWvWVFiXlpZGXfvzn/8cZ599dr5bb6J///7x0EMPbbL77V577ZWO6rr44ovj1ltvjUWLFqXr//mf/4nZs2dHz549N/MJaNBh4OQPyXPPPRcvvPBCvPXWW/HPf/4zbcX85Zdfpn8A2rVrl47kF2S33XZLR79+/QpdNgAAAAAAAAAAAAAAAAA0GUkQeOedd67X7xw9enSd3btVq1axdOnSdL5ixYpqXbv++XUZBk7Cv+eee+4G3X+TIPCECROiQ4cOdbY/xxxzTNx44435Y0899VR8//vfj/q2tgnkUDMbBp42bVqaRE/+MH766acVPiufTC8qKsrPr7/++vRn37594+STT07bWXfp0qUeqwYAAAAAAAAAAAAAAAAAGrqtttoqHwb+7LPPqnXt+ufXVSA3CbuedNJJ8fe//73C8cGDB8djjz0WnTt3jrq0++67VwgDz5o1K+rTtCaUQy2OjEnS1j/4wQ9i4MCBcfPNN6frZNPX3/iyUV7Zee+8806cf/756b8k8Lvf/S5WrVpVgCcBAAAAAAAAAAAAAAAAABqirl275ucLFy6s1rXz58+vsK6LUO68efNin3322SAIPGzYsJg4cWKdB4ET64doP/nkk6gPS5pgDjVTYeA33ngjhgwZErfcckusW7cu3dDym122yZWNRNn5yfqLL76IX//617HXXnvFxx9/XOCnAwAAAAAAAAAAAAAAAKAhyOWSjJrxVaMx69WrV36+bNmyanUHnjNnTn6e5B179OhRq7W9/fbbaVfel19+ucLxY489Nh5//PH42te+FvWhfPg2UVpaWuff+UYTzaGWREYkL2D//fePRYsWpeuyjUxG9+7dY999941+/fpFz549o02bNtG6detYu3ZtLF++PBYsWBCzZ8+OqVOnxqRJk/Ktt8vu8corr6S/2C+88EJsvfXWBX5SAAAAAAAAAAAAAAAAACDLBgwYsNEAblVMnz69Qqg4yUPWlldffTUOOuigfBazzM9//vO4/PLLN+iE+1W+/PLLNKOZdDNOwrV77LFHla9NriuvY8eOUZfeaMI51EyEgZP2yccdd1z6Asr/oh1//PHpL+Cuu+5a5Xslv2xPPPFEXH/99TF27Nj8i/jwww/jO9/5Tjz33HNRUpKJxwYAAAAAAAAAAAAAAAAAMmj94O/kyZOrFAZOQqYzZszIr4cOHVprNSVB1gMOOCCWLFmSP1ZcXBzXXHNNnH766dW+X9IVNwnNlnXM3XbbbdMsZlUle1JedbKg1bWqiedQiyMDLr744jTpXrZhSWp6woQJcdddd1X75Se/uAcffHA8+OCD8Y9//CNtn132YpNk9k033VRHTwEAAAAAAAAAAAAAAAAANAZ77bVXtGrVKr8eN25cla4bP358GjYtk3TxrQ0fffRRHHrooRWCwC1btowxY8ZsVhA4kXTO7d27d349Z86cmDZtWpWuXb16dZrjLNO8efN0z+rKxU08h1rwMPDKlSvj2muvzb+ApOV10kZ5n332qfG9995773j++efT9s5l9//d735XK3UDAAAAAAAAAAAAAAAAAI1TaWlpHHnkkfn1448/XqHjb2WSLr1lkjDx8OHDa1xLEi4eMWJEzJs3r8K9k4By+Ro3x+GHH15hfd1111XpuiQwO3fu3Pw66drbrl27qAsr5VALHwZOWih/9tln6QY1a9YsTaEnraRrS5cuXdJkd1mb6uSX/Zlnnqm1+wMAAAAAAAAAAAAAAAAAjc9PfvKTDQK5y5cvr/T8yy67LA2WljnllFOibdu2Na4jCRgnXXDLJKHVJDe5//771/jeP/jBD9JOueVDvl+VwXzxxRfjF7/4RYWuwOeee27UlbFyqIUPAz/88MP5X75jjjkmBg8eXOvfkbSW3nffffPrxx57rNa/AwAAAAAAAAAAAAAAAIDGIRdFsc7Y5Ej2qLEbOnRoHH300fn15MmT45BDDqnQETexdu3auOSSS+K8887LH2vfvn1ccMEFm7x/z54902xl2Zg4ceIG5yTh49///vcVjp199tk17ghcZsCAAXHaaafl12vWrEm7Bd999935cGyZZH3LLbfEAQccUCEUff7556f3qSsPy6FGSaELePvtt/Pz73znO3X2Pccff3z+D8Lrr79eZ98DAAAAAAAAAAAAAAAAADQON9xwQ0yZMiVmzpyZrpOOsX369InDDjss+vbtG4sXL45HHnkk5syZk78m6bR76623RufOnWv8/XfccUfMnz+/wrGrrroqHdXVo0ePmD179gbHr7zyypg6dWq+q/GyZcvixBNPjN/85jex3377RYcOHeLjjz+OJ598Mj744IMK137ve9+LX//611GX3pZDLXwY+KOPPsrPv/71r9fZ9wwZMiQ/nzFjRp19DwAAAAAAAAAAAAAAAADQOHTq1CmefvrptBvuO++8kx5buXJl3H///Rs9v0WLFnHzzTfHEUccUSvfP27cuKhrrVq1ivHjx6fB3oceeih/PHnesmdeXxJ4PvPMM9MgcTKvSx/JoRY+DLx06dL8vGvXrnX2Pdttt11+vmTJkjr7HgAAAAAAILt26dux0CUAAAAAAAAAAA1M9+7d0865v/vd7+L666+PRYsWbXBOUVFRHHrooXHZZZfFgAEDau27yzoS17V27drFgw8+GPfee2/88Y9/jFdeeWWj5zVv3jwNRl900UWx22671UttS+VQCx8GXrFiRX7epk2bOv1FTORyubRFNQAAAAAAAAAAAAAAAABAVbRs2TIuvvjiuPDCC2PSpEnx7rvvxsKFC6O0tDQNke61116x9dZbV+ues2fP/spz3nzzzahPxx57bDrmzp0bzz33XMybNy8+//zz6NixY3Tr1i323nvvfF6zvqyQQy18GHjNmjUVEuF1paTk/z/q6tWr6+x7AAAAAAAAAAAAAAAAAIDGqVmzZrHPPvukozHbZptt4phjjoksWCOHWvgwMAAAAAAAAAAAAAAAAABkSS6K0kHl7A/Un+J6/C4AAAAAAAAAAAAAAAAAAKAahIEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjSiJDnn322cjlcoUuAwAAAAAAAAAAAAAAAACAjHm2ieZQMxEGLioqSjd/3333rZfvAQAAAAAAAAAAAAAAAIDK5HJJFq2o0GVkmv2hPhU18RxqJsLA9bVByXcAAAAAAAAAAAAAAAAAANCwFDXhHGpxZER9JKWzmMYGAAAAAAAAAAAAAAAAAGDTck04h1rwzsDDhg3LbFIaAAAAAAAAAAAAAAAAAIDCGSaHWvgw8MSJEwtdAgAAAAAAAAAAAAAAAAAAGTRRDjWKC10AAAAAAAAAAAAAAAAAAACQ0c7AAAAAAAAAAAAAAAAAAJAluShKB5WzP1B/dAYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMKil0AQAAAAAAAAAAAAAAAACQJblcMooKXUbm9wioHzoDAwAAAAAAAAAAAAAAAABARgkDAwAAAAAAAAAAAAAAAABARgkDAwAAAAAAAAAAAAAAAABARgkDAwAAAAAAAAAAAAAAAABARpUUugAAAAAAYON22/FrhS4BAAAAAAAAAAAAKDBhYAAAAAAAAAAAAAAAAAAoJxdF6aBy9gfqT3E9fhcAAAAAAAAAAAAAAAAAAFANwsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRJYUuAAAAAAAAAAAAAAAAAAAyJVcUuVxRoavINvsD9UZnYAAAAAAAAAAAAAAAAAAAyChhYAAAAAAAAAAAAAAAAAAAyChhYAAAAAAAAAAAAAAAAAAAyChhYAAAAAAAAAAAAAAAAAAAyChhYAAAAAAAAAAAAAAAAAAAyKiSQhcAAAAAAAAAAAAAAAAAAFmy7v8NKmd/oP7oDAwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABlVUugCAKg9e/ZvU+gSAKBe+G8eAAAAAAAAAAAAAHUplytKB5WzP1B/dAYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMKil0AQAAAAAAAAAAAAAAAACQJbkoSgeVsz9Qf3QGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjCopdAEAAAAAAAAAAAAAAAAAkCW5KIpcrqjQZWR+j4D6oTMwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABkVEmhCwAAAAAAAAAq2mfnVoUuAQAAAAAAAADICGFgAAAAAAAAAAAAAAAAAFhPLooKXQJAqvhfPwAAAAAAAAAAAAAAAAAAgKwRBgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwqKXQBAAAAAAAAAAAAAAAAAJAl63L/GlTO/kD90RkYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyqqTQBQAAAAAAAAAAAAAAAABAluSiKB1Uzv5A/dEZGAAAAAAAAAAAAAAAAAAAMkoYGAAAAAAAAAAAAAAAAAAAMkoYGAAAAAAAAAAAAAAAAAAAMkoYGAAAAAAAAAAAAAAAAAAAMqqk0AUAAAAAAAAAAEAhfevrLQtdAgAAAAAAQKWEgQEAAAAAAAAAAAAAAACgnFyuKB1Uzv5A/Smux+8CAAAAAAAAAAAAAAAAAACqQRgYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyShgYAAAAAAAAAAAAAAAAAAAyqqTQBQAAAAAAQGNzwMDSQpcAAAAAAAAAANRALvevQeXsD9QfnYEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjSgpdAAAAQEN24KDSQpcAAAAAAAAAAAAAAEAjpjMwAAAAAAAAAAAAAAAAAABklDAwAAAAAAAAAAAAAAAAAABkVEmhCwAAAAAAAAAAAAAAAACALMlFUayLokKXkfk9AuqHzsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRwsAAAAAAAAAAAAAAAAAAAJBRJYUuAAAAAAAAAAAAAAAAAACyJJcrSgeVsz9Qf3QGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjCopdAEAAAAAAAAAAAAAAAAAkCW53L8GlbM/UH90BgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwSBgYAAAAAAAAAAAAAAAAAgIwqKXQBAAAAAAAAAAAAAAAAAJAluShKB5WzP1B/dAYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMKil0AQAAAAAAAAAAAAAAAACQJbmIWJf8D5WyPVB/dAYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMEgYGAAAAAAAAAAAAAAAAAICMKil0AdSexYsXx1/+8pd49NFH480334wlS5ZE+/btY9ttt4399tsvTj755BgwYECd1pB836efflrt60pLS2PFihV1UhNAFvz7EP/JBQAAAAAAAAAAAAAAAKpPMqmRuPPOO+PHP/5xLF26tMLxBQsWpOPVV1+NK6+8Mn70ox+lP7fYYotar+Gf//znZgWBAQAAAAAAAAAAAAAAALIkl0tGUaHLyPweAfWjuJ6+hzp0+eWXx4gRIzYIAm/MDTfcEPvvv3+sXLmy1uuYMmVKrd8TAAAAAAAAAAAAAAAAAKApEwZu4MaPHx/nnntuft2iRYv41a9+FdOmTYvly5fHnDlz0gBw165d8+e88MILcdppp9V6LVOnTs3PmzdvngaOc7lclcaKFStqvR4AAAAAAAAAAAAAAAAAgIZOGLgBSwK0o0aNSsO0iZYtW8YTTzwRv/3tb6N///7peptttknPSbr27rTTTvlrb7/99nj22WfrrDNw8l1JMBkAAAAAAAAAAAAAAAAAgM0nDNyA3XzzzfHhhx/m13/4wx9i2LBhGz23S5cuMXbs2GjdunX+WNJBuK46Aw8aNKhW7w0AAAAAAAAAAAAAAAAA0BQJAzdgN910U37esWPHtAPwpvTq1SvOOOOM/HrSpEkxY8aMWqnls88+i1mzZuXXwsAAAAAAAAAAAAAAAAAAADUnDNxAJcHbN954I78ePnx4lJaWfuV1J5xwQoX1fffdVyv1vP7665HL5fJrYWAAAAAAAAAAAAAAAACgoUqiUsZXD6B+CAM3UBMmTKiw3m+//ap03cCBA6N9+/b59fjx42ulnqlTp1ZYCwMDAAAAAAAAAAAAAAAAANScMHADlXTiLW/w4MFVuq6oqKhCUPe1116LtWvX1rieKVOm5OfbbLNNdOzYscb3BAAAAAAAAAAAAAAAAABo6oSBG6jp06dXCPj26dOnytf27t07P1+xYkXMmTOnVjsDJ2HjdevWxWOPPRannHJK7LjjjtGmTZto1apV9OrVK7773e/GHXfcEatXr67x9wIAAAAAAAAAAAAAAAAANGYlhS6AzTNv3rz8POnC26JFiypf27Vr1wrrJAzco0ePza4l6Sz85ptv5tfLly+PXXbZZYPuxYnZs2enY8yYMfGb3/wmbrjhhjjwwAM3+7sBAAAAAAAAAAAAAAAAABozYeAGasGCBfn5VlttVa1r27dvX2G9ePHiGtXyzjvvpAHgMk8//XSVrps5c2Yceuihce2118aoUaOiNvdm4cKF1brmvffeq7XvBwAAAAAAAAAAAAAAAACoLcLAdWjcuHHx7rvv1tr9zjrrrPz8888/z8/btGlTrftsueWWFdbLli2rUV1TpkzZ4FhpaWmMGDEiTj755OjXr1/6nR9++GE8/vjjccUVV6Tdgcu6Cp9++unRrVu3OOKII6I2XH/99WnXYQAAAAAAAAAAAAAAAIDNsS6K0kHl7A/UH2HgOnTLLbfEmDFj6iQMvHLlyvy8efPm1brP+uevXr26RnVNnTq1wrpnz57pc++6664Vjvft2zcd3//+99Og8OjRo9PjuVwuRo4cGbNmzdqgazEAAAAAAAAAAAAAAAAAQFNWXOgC2DxJR90yxcXVe43rn79u3boa1ZJ0/j3qqKNi8ODB0b1793j00Uc3CAKX17Jly7j77rtj6NCh+WNLly6NK6+8skZ1AAAAAAAAAAAAAAAAAAA0NjoDN1AlJSX5jr7lg8FVsWbNmgrr0tLSGtVyyimnpKO63Yn/9Kc/VQgE33XXXXHppZdGTZ1++ulxzDHHVOua9957L4488sgafzcAAAAAAAAAAAAAAAAAQG0SBq5Do0ePrrN7t2rVKu2mm1ixYkW1rl3//JqGgTfX7rvvHjvuuGNMnz49Xc+ePTtmzpwZffr0qdF9O3funA4AAAAAAAAAAAAAAAAAgIauuNAFsHm22mqr/Pyzzz6r1rXrn9+hQ4colCQQXN6sWbMKVgsAAAAAAAAAAAAAAAAAQNboDNxAde3aNR+cXbhwYbWunT9/foV1IbvodunSpcL6k08+KVgtAAAAAAAAAAAAAAAAAKlcRC5X6CIyzv5AvdEZuIHq1atXfr5s2bJqdQeeM2dOfl5UVBQ9evSIQsmt91/E0tLSgtUCAAAAAAAAAAAAAAAAAJA1wsAN1IABAyqs33777SpfO3369Aqh4tatW9eolqVLl8Y777wTzz77bMyYMaNa1y5YsKDCumPHjjWqBQAAAAAAAAAAAAAAAADqwuLFi+Pyyy+Pb33rW9GlS5do0aJF+nPIkCFxzjnnxJtvvlnnNbRv3z5tElrd0bJlyyp/R5IX/MUvfhHf+MY30u9LmoBut9128c1vfjOuuOKK+Pjjj+v0GdmQMHADtfvuu1dYT548ucrB3fKB3aFDh9aojvHjx0e7du2iX79+MWzYsLj00kurdX35uouLi2PQoEE1qgcAAAAAAAAAAAAAAAAAatudd94ZvXv3jl/+8pcxYcKEtFHm6tWr05+vvvpqXHnllfH1r389Tj/99Fi+fHmd1PDPf/4zPv3006gra9asSZ+vf//+aej3lVdeSb9v1apV8eGHH8akSZPSkHCyDzfeeGOd1cGGhIEbqL322itatWqVX48bN67K4d1169bl1wcddFCN6hg4cGCF9ZNPPhlr166t0rXTpk2r0NE4+dcP2rZtW6N6AAAAAAAAAAAAAAAAAKA2Jd2AR4wYkTbr/Co33HBD7L///rFy5cpar2PKlClRl0Hg7373u+mzls8gbkwSdv7Rj34UZ599dp3VQ0XCwA1U0lb7yCOPzK8ff/zxCh1/K3PNNdfk50mYePjw4TWqY9ttt63QzTdp733//fdX6doLL7wwcrlcfv3DH/6wRrUAAAAAAAAAAAAAAAAAQG1KGnSee+65+XWLFi3iV7/6VdosMwnFzpkzJw0Ad+3aNX/OCy+8EKeddlqt1zJ16tT8vHnz5mngOMnoVWWsWLFik/c+//zz48EHH8yvu3Tpkj5X0hE4ec6kMWjy3Mnzl/nTn/4Ut9xyS60/JxsSBm7AfvKTn+TnSdI++ZcFNtU+/LLLLovnn38+vz7llFNqpRPv+n8p/fznP4/58+d/ZSh59OjR+XWvXr3ixBNPrHEtAAAAAAAAAAAAAAAAADWVyxUZVRiNXRKgHTVqVL4pZsuWLeOJJ56I3/72t9G/f/90vc0226TnJF17d9ppp/y1t99+ezz77LN11hk4+a7ywdyaeOONN+KKK67Ir3v37p1+V/JcSUPR5Dl33HHH9Ln/8Y9/ROvWrSvkCavSMZmaEQZuwIYOHRpHH310fj158uQ45JBDYu7cuRXOW7t2bVxyySVx3nnn5Y+1b98+Lrjggk3ev2fPnlFUVJQfEydOrDQMPGDAgPw6SfoPGzYsXn755Q3O/eKLL+Kcc86JM888M38sufdf/vKX9C8EAAAAAAAAAAAAAAAAAMiCm2++Oc3LlfnDH/6QZuc2JumkO3bs2ApB2aSTbl11Bh40aFCt3fc3v/lN2rA0UVxcnDYCLd/peP1cY/luwEuWLKkQJKZulNTRfaknSZvtJGE/c+bMdP3MM89Enz594rDDDou+ffvG4sWL45FHHklbjZdJ/jDeeuut0blz51qpoaSkJMaMGRN77713LFy4MD32zjvvxL/927/FnnvuGbvttluUlpbGrFmz4rHHHquQ8k+CwDfddFPst99+tVILAAAAAAAAAAAAAAAAANSGJPtWpmPHjmmn3E3p1atXnHHGGfHHP/4xXU+aNClmzJgR/fr1q3Etn332WZrRq+0w8Pz58+PBBx/Mr5Ns4i677LLJa4455pg0N/jSSy+l67/+9a9x8cUXp3lB6oYwcAPXqVOnePrpp+OAAw5IA7iJlStXxv3337/R85O238m/RnDEEUfUah077LBDWkfyh/jtt9/OH3/uuefSsTFt27aNa665JkaOHFmrtQAAAAAAAAAAAAAAAABATSTB2zfeeCO/Hj58eNo086uccMIJ+TBw4r777ov/+q//qnE9r7/+euRyuVoPA48fPz7WrFmTX//Hf/xHla5LnrMsDPzRRx/F//zP/6QNR6kbxXV0X+pR9+7d0/bev/71r6NDhw4bPSdJ1H/729+OV155JUaMGFEndey8887x8ssvp39RbbvttpWe165duzj11FPT0LAgMAAAAAAAAAAAAAAAAABZM2HChArr/fbbr0rXDRw4MNq3b18hbFsbkgxhebUVBt7c59x3330rrGvrOdk4nYEbiZYtW6ZttC+88MK0dfi7774bCxcuTP+lge222y722muv2Hrrrat1z9mzZ1e7jlatWsUvfvGLOOecc2LatGlp+DipY/Xq1dG1a9fo0aNHWkvSoRgAAAAAAAAAAAAAAAAAsijpxFve4MGDq3Rd0tgzCepOnDgxXb/22muxdu3aaNasWY3qmTJlSn6+zTbbRMeOHaO2n7Nz585VziEmzUVLSkryXYWTRqPUHWHgRib5C2GfffZJRyElf2Elf5iTAQAAAAAAAAAAAAAAANCQrMv9a1C5xr4/06dPr5CX69OnT5Wv7d27dz4MvGLFipgzZ07aaLO2OgMnYeN169bFE088EX/729/i+eefj7lz56ah4y5dusSQIUPiO9/5TvzHf/xHNG/evNJ75nK5mDFjRn7dt2/fKteTBIGTRqbvv/9+uk4anFJ3iuvw3gAAAAAAAAAAAAAAAAAADc68efPy86QLb4sWLap8bdeuXSuskzBwTSQh3zfffDO/Xr58eeyyyy5xyCGHxK233poGej///PP0+OzZs2PMmDExcuTI6N+/fxoYrsySJUti5cqV+XW3bt2qVVf556zpM7JpOgMDAAAAAAAAAAAAAAAAADXy3nvvVfuaTp06RefOnSOLFixYkJ9vtdVW1bq2ffv2FdaLFy+uUS3vvPNOGvQt8/TTT1fpupkzZ8ahhx4a1157bYwaNWqTz1jT51yzZk0sW7Ys2rRpU617UDXCwAAAAEC9OWZocaFLAAAAAAAAAAAAAOrAkUceWe1rLrzwwrjooos2+zvHjRsX7777btSWs846Kz9POu2WqW7Adcstt6ywTkKyNTFlypQNjpWWlsaIESPi5JNPjn79+qXf+eGHH8bjjz8eV1xxRdohuKyr8Omnn552/T3iiCMq3KP8M9bWcwoD1w1hYAAAAAAAAAAAAAAAAACgwbnllltizJgxdRIGXrlyZX7evHnzat1n/fNXr15do7qmTp1aYd2zZ8/0uXfdddcKx/v27ZuO73//+2lQePTo0enxXC4XI0eOjFmzZlXo5lv+GTdWd30/J5XTjgcAAAAAAAAAAAAAAAAAoJyko26Z4uLqRTHXP3/dunU1qiXp/HvUUUfF4MGDo3v37vHoo49uEAQur2XLlnH33XfH0KFD88eWLl0aV155ZaXPuLG66/s5qZzOwAAAAAAAAAAAAAAAAABQTi7tplroKrJt/e154IEHYvvtt6/WPTp16hRZVVJSku90u35o9qusWbOmwrq0tLRGtZxyyinpqG7X3j/96U8VAsF33XVXXHrppRWesbxCPyeVEwYGAAAAAAAAAAAAAAAAAGokCQLvvPPO9fqdo0ePrrN7t2rVKu2mm1ixYkW1rl3//EKFZHfffffYcccdY/r06el69uzZMXPmzOjTp0/+GctrqM/ZFFSvZzMAAAAAAAAAAAAAAAAAQCO31VZb5eefffZZta5d//wOHTpEoSSB4PJmzZq10Wes6XMWFxdHu3btNrtONk0YGAAAAAAAAAAAAAAAAACgnK5du+bnCxcurNa18+fPr7Du3LlzFEqXLl0qrD/55JMKnxUVFdXKcyaB52bNmtWoVionDAwAAAAAAAAAAAAAAAAAUE6vXr3y82XLllWra+6cOXPy8yRs26NHjyiUXC5XYV1aWlphvvXWW2+07qoof375/aL2CQMDAAAAAAAAAAAAAAAAAJQzYMCACuu33367ytdOnz69Qki2devWNapl6dKl8c4778Szzz4bM2bMqNa1CxYsqLDu2LFjpc+ZfMe6deuqfN8lS5Zs9D7UPmFgAAAAAAAAAAAAAAAAACgnF0VGFUZjtvvuu1dYT548ucrB3fKB3aFDh9aojvHjx0e7du2iX79+MWzYsLj00kurdX35uouLi2PQoEGVPucXX3wR06ZNq9J9X3zxxQrrmj4nmyYMDAAAAAAAAAAAAAAAAABQzl577RWtWrXKr8eNG1fl8G757roHHXRQjeoYOHBghfWTTz4Za9eurdK1SbC3fEfjIUOGRNu2bSucs359VX3OsWPHVlgfeOCBVbqOzSMMDAAAAAAAAAAAAAAAAABQTmlpaRx55JH59eOPP16h429lrrnmmvw8CRMPHz68RnVsu+22Fbr5fvzxx3H//fdX6doLL7wwcrlcfv3DH/5wg3P23HPP6N69e3590003xapVqzZ5308++STuueee/HrvvfeOnj17VqkmNo8wMAAAAAAAAAAAAAAAAADAen7yk5/k50m33xEjRsTy5csrPf+yyy6L559/Pr8+5ZRTNujEuzlOO+20Cuuf//znMX/+/K8MJY8ePTq/7tWrV5x44okbnFdcXBxnnHFGfv3+++/Hz372s0rvm+zDySefHMuWLcsf++lPf1rlZ2HzCAMDAAAAAAAAAAAAAAAAAKxn6NChcfTRR+fXkydPjkMOOSTmzp1b4by1a9fGJZdcEuedd17+WPv27eOCCy7Y5P2TbrpFRUX5MXHixErDwAMGDMivP/zwwxg2bFi8/PLLG5z7xRdfxDnnnBNnnnlm/lhy77/85S/RsmXLjd7/xz/+cWy33Xb59XXXXZceW7FiRYXzPv300zjmmGNi3LhxFboCf/e7393kc1JzJbVwDwAAAAAAAAAAAAAAAACARueGG26IKVOmxMyZM9P1M888E3369InDDjss+vbtG4sXL45HHnkk5syZU6Hb7q233hqdO3eulRpKSkpizJgxafB24cKF6bF33nkn/u3f/i323HPP2G233aK0tDRmzZoVjz32WCxdurRCEPimm26K/fbbr9L7t27dOu6+++448MAD852Pk0Dw//k//ycOP/zw6Nq1a/zzn/+Mhx9+OD7//PP8dR06dIg777yzVp6RTRMGBgAAAACopv/Ys6jQJQAAAAAAAAAAUIdyuYh1uUJXkf09ago6deoUTz/9dBxwwAFpADexcuXKuP/++zd6fosWLeLmm2+OI444olbr2GGHHdI6ks68b7/9dv74c889l46Nadu2bVxzzTUxcuTIr7z/XnvtFQ899FAcddRRsWzZsvTYJ598koaaNyYJCD/66KPRo0ePzX4mqq64GucCAAAAAAAAAAAAAAAAADQp3bt3j6lTp8avf/3rtBvuxiQdeL/97W/HK6+8EiNGjKiTOnbeeed4+eWX449//GNsu+22lZ7Xrl27OPXUU9PQcFWCwGWSwPP06dPjxBNPjJYtW270nFatWsWoUaPirbfeikGDBm3Wc1B9OgMDAAAAAAAAAAAAAAAAAGxCEo69+OKL48ILL4xJkybFu+++GwsXLozS0tLYbrvt0s66W2+9dbXuOXv27GrXkYRxf/GLX8Q555wT06ZNS8PHSR2rV69Ou/UmnXqTWpIOxZujW7duceedd8aNN94YEydOjA8++CCWLFmSdhnu169f7LHHHtGmTZvNujebTxgYAAAAAAAAAAAAAAAAAKAKmjVrFvvss086CinpRJx0Ck5GXdhyyy3j8MMPr5N7U33Fm3ENAAAAAAAAAAAAAAAAAABQD4SBAQAAAAAAAAAAAAAAAAAgo0oKXQAAAAAAAAAAAAAAAAAAZEku969B5ewP1B+dgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKNKCl0AAAAAAAAAAAAAAAAAAGRJLvevQeXsD9QfnYEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjhIEBAAAAAAAAAAAAAAAAACCjSgpdAAAAAAAAAAAAAAAAAABkybpcUTqonP2B+qMzMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZFRJoQsAAAAAAAAAAAAAAAAAgEzJReRyhS4i4+wP1BudgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKNKCl0AAAAAAAAAAAAAAAAAAGRJLhnJ/1Ap2wP1R2dgAAAAAAAAAAAAAAAAAADIKGFgAAAAAAAAAAAAAAAAAADIKGFgAAAAAAAAAAAAAAAAAADIKGFgAAAAAAAAAAAAAAAAAADIKGFgAAAAAAAAAAAAAAAAAADIqJJCFwAAAAAAAAAAAAAAAAAAWbIu969B5ewP1B+dgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKOEgQEAAAAAAAAAAAAAAAAAIKNKCl0AAAAAAAAAAAAAAAAAAGRJLleUDipnf6D+6AwMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZJQwMAAAAAAAAAAAAAAAAAAAZVVLoAgAAAIC694NvFboCAAAAAAAAAAAAAGBzCAMDAAAAAAAAAAAAAAAAQDm53L8GlbM/UH+K6/G7AAAAAAAAAAAAAAAAAACAahAGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAAAAAACAjBIGBgAAAAAAAAAAAP4ve/cebnVV5w/8c45bDyLITS6JggbeghG6wnjJW5qXNDQt00Gt0R5LSknLboaZjTZehqa8jDFjlk/pDDgyBjHlg2gw6ZTIpUIuFslFRQQRQq77+3v29uees/EcOPtwzt4LfL16ln7X96y1vp+9mmf66/18AAAAAIBE5WpdAAAAAAAAAAAAAAAAAACkJMsi8lmtq0j/joDq0BkYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJEgYGAAAAAAAAAAAAAAAAAIBECQMDAAAAAAAAAAAAAAAAAECihIEBAAAAAAAAAAAAAAAAACBRuVoXAAAAAAAAAAAAAAAAAAApybI3Bs1zP1A9OgMDAAAAAAAAAAAAAAAAAECihIEBAAAAAAAAAAAAAAAAACBRwsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACQqV+sCAAAAAAAAAAAAAAAAACAlWWEU/kGzXA9Uj87AAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJytW6AAAAAAAAAAAAAAAAAABIST57Y9A89wPVozMwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJEgYGAAAAAAAAAAAAAAAAAIBECQMDAAAAAAAAAAAAAAAAAECicrUuAAAAAAAAAAAAAAAAAACSkkVkWa2LSJz7garRGRgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFG5WhcAAAAAAAAAAAAAAAAAACnJ598YNM/9QPXoDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRk2RuD5rkfqB6dgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEpWrdQEAAAAAAAAAAAAAAAAAkJKsMAr/oFmuB6pHZ2AAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgETlal0AAAAAAAAAAAAAAAAAAKQkyyLyWa2rSP+OgOrQGRgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAXGfHawAAdalJREFUAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFG5WhcAAAAAAAAAAAAAAAAAACnJsqw4aJ77gerRGRgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFG5WhcAAAAAAAAAAAAAAAAAACnJsjcGzXM/UD06AwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASFSu1gUAAAAAAAAAAAAAAAAAQEryWUQ+X+sq0r8joDp0BgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASFSu1gUAAAAAAAAAAAAAAAAAQEqy7I1B89wPVI/OwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAicrVugAAAAAAAAAAAAAAAAAASEmWReSzWleR/h0B1aEzMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACARAkDAwAAAAAAAAAAAAAAAABAonK1LgAAAAAAAAAAAAAAAAAAUpJlbwya536genQGBgAAAAAAAAAAAAAAAACARAkDAwAAAAAAAAAAAAAAAABAooSBAQAAAAAAAAAAAAAAAAAgUcLAAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAADSS5TOjBePtZtWqVXHLLbfESSedFL1794699tqr+O/3vve9cc0118Tvf//7Nv/m4sWLo66urs1G4bzmDB06tNXnvvjii23+2/k/uUbPAAAAAAAAAAAAAAAAAABs4/77749Ro0bFmjVryt6vWLGiOGbOnBm33XZbfPazny3+e++9945dyebNm2PevHm1LoNm6AwMAAAAAAAAAAAAAAAAANCMQjfgkSNHviUI3JS77rorTjzxxNi4cWOkpkePHtGtW7cm//bHP/4xNm3aVPWaaBlhYAAAAAAAAAAAAAAAAACAJkyePDmuvfba0nyvvfaKr33ta8Xw7Ouvvx5Lly4tBoD79OlTWvPkk0/GZz7zmTb5/kEHHRRZllU8Vq9eHQMGDCir+6GHHoouXbo0+Z3Zs2eXzf/85z9X9L3Gv5+2JwwMAAAAAAAAAAAAAAAAALCNDRs2xOWXX14MuxZ06NAhfvWrX8V3vvOdOOKII4rzvn37FtfMmjUr3vWud5X2/vjHP45f//rXNam7UG+hk/Fzzz1XenfbbbfFBz/4wWb3FOp/U9euXYshZNIhDAwAAAAAAAAAAAAAAAAAsI1x48bFkiVLSvObb7652UBt79694+c//3nss88+pXeFDsK1cMcddxRredNZZ50Vo0aN2u6exp2BjzzyyHatj8oJAwMAAAAAAAAAAAAAAABAI/nCyIztjtj93XPPPaXn/fbbr9gBeHsOPvjguOKKK0rz6dOnx/z586OaFi5cGNdee21p3r1792KoeUcah4GHDBnSbvXROsLAAAAAAAAAAAAAAAAAAACN/PnPf465c+eW5meffXY0NDTscN8FF1xQNv+P//iPqKbPfe5zsX79+tL89ttvj549e253z9KlS+OVV14pzYWB0yMMDAAAAAAAAAAAAAAAAADQyNSpU8vmJ5xwQov2HXnkkdGtW7fSfPLkyVEtDz74YDz66KOl+fHHHx8XX3xxRV2BC4SB0yMMDAAAAAAAAAAAAAAAAADQyJw5c8rmQ4cObdG+urq6sjDtM888E1u3bo32tnHjxrj22mtL8/r6+vinf/qnFu2dNWtW6XmPPfaIwYMHt0uNtJ4wMAAAAAAAAAAAAAAAAABAI88++2xZwHfAgAEt3vvOd76z9Lxhw4ZYunRptLc77rgj/vKXv5Tmn/rUp1ocYG7cGfiwww6LDh06xIwZM+Jzn/tcsdNxly5diu/69esXZ5xxRtx1113x17/+tV1+B03LNfMeAAAAAAAAAAAAAAAAAOBt6YUXXig977fffrHXXnu1eG+fPn3K5oUwcP/+/aO9rF+/Pm666abSvKGhIcaMGdPi/Y07AxdCvx/84Afj17/+9VvWLVmypDgmT54cN9xwQ9x2221xwQUXtMEvYEeEgQEAAAAAAAAAAAAAAACgsSwiy2pdROK2uZ9FixZVfETPnj2jV69ekaIVK1aUnrt3717R3m7dupXNV61aFe3pnnvuiZUrV5bml156aRx44IEt2lvo8Pvcc8+V5jNnzmzRvhdffDEuvPDC+MMf/hDf+c53WlE1lRAGBgAAAAAAAAAAAAAAAAB2yogRIyreU+hee/3117f6m5MmTYqFCxdGW7nqqqtKz+vWrSs9d+7cuaJzOnXqVDZfu3ZttJctW7YUO/S+ac8994yvfvWrLd4/Z86cyOfzZe/q6+vj4x//ePz93/99DB48uBhuLoR/H3vssbj99ttj7ty5pbX/8A//UOyE/PnPf76NfhFNEQYGAAAAAAAAAAAAAAAAAHY59957b0yYMKFdwsAbN24sC9hWYtv1mzdvjvYyceLEWLp0aWleCPH27du3xftnz55dNu/Ro0f87Gc/i5NPPrnsff/+/eOSSy6Jiy66KEaPHh3//M//XPrbF7/4xfjwhz8chx566E79FppXv52/AQAAAAAAAAAAAAAAAAC87WzdurWsU24ltl2/befdtnTXXXc1G2huif33378YIH7f+94XvXv3joceeugtQeBtf9v3vve9OPfcc8u6E99www2tqJ6W0hkYAAAAAAAAAAAAAAAAANgpDz/8cAwcOLCiPT179oxU5XK5UkffxsHgliiEYxtraGiI9vD888/H1KlTS/NCoLcwKnHWWWcVR6Vuv/32YlfiN++o0KF53Lhx0aFDh4rPYseEgQEAAAAAAAAAAAAAAACAnVIIAg8aNKiq3xw/fny7nd2xY8dYs2ZN8XnDhg0V7d12fXuFgR944IHIsqw0v+SSS6JaDjzwwDjppJNiypQppd88Y8aM4jvanjAwAAAAAAAAAAAAAAAAADSSz2fFQfN29/vp3r17KQz82muvVbR32/U9evSI9vDv//7vpee99torPvnJT0Y1DRs2rBQGLvjzn/9c1e+/ndTXugAAAAAAAAAAAAAAAAAAgJT06dOn9Pzyyy9XtPell14qm/fq1Sva2gsvvBAzZ84szU844YRigLmaevfuXTZfuXJlVb//diIMDAAAAAAAAAAAAAAAAADQyMEHH1x6Xrt2bUXdgZcuXVp6rquri/79+7d5fYWOvFn2f92ZP/rRj0a1Nf5+QUNDQ9VreLsQBgYAAAAAAAAAAAAAAAAAaGTw4MFl83nz5rV477PPPlsWKt5nn32irT366KNl8zPPPLNV56xbty6ee+65+J//+Z+YNWtWRXtXrFhRNt9vv/1aVQM7JgwMAAAAAAAAAAAAAAAAANDIsGHDyua//e1vW7RvzZo1MX/+/NJ8+PDh0R5mzJhReh44cGAccMABFZ/xxz/+MTp37lzcf/TRR8fnP//5ivZveyfvec97Kq6BlhEGBgAAAAAAAAAAAAAAAABopBCO7dixY2k+adKkFu2bPHly5PP50vyUU05p89peeOGF+Mtf/lKaH3PMMa0659BDD42GhobS/H//939j9erVLdr7yiuvxGOPPVaa9+7dO971rne1qg52TBgYAAAAAAAAAAAAAAAAABrJMqMlY3dWCMmOGDGiNP/lL39Z1vG3Od///vdLz4Uw8dlnn93mtT3zzDNl88GDB7fqnFwuF6eeemppvmnTphg3blyL9t58883x+uuvl+aXXXZZ1NXVtaoOdkwYGAAAAAAAAAAAAAAAAABgG5///OdLz4VuvyNHjiwLwG7ru9/9bvzmN78pzT/1qU/Fvvvu2+Z1zZ07t2x+xBFHtPqsz3zmM2XzG2+8MZ599tnt7pk4cWLcfvvtpXnXrl1j1KhRra6BHRMGBgAAAAAAAAAAAAAAAADYxvDhw+NjH/tYaf7b3/622El32bJlZeu2bt0a3/72t+OrX/1q6V23bt3im9/85nbPP+igg4rddN8c06ZNa1FdCxcuLJv37ds3Wuv0008v6w782muvxQknnFDshLytzZs3xz/+4z/GueeeWwxHv2ns2LHRu3fvVtfAjuVasAYAAAAAAAAAAAAAAAAA4G3nrrvuilmzZsVzzz1XnD/xxBMxYMCAOOOMM+KQQw6JVatWxS9+8YtYunRpaU99fX386Ec/il69erVLTc8//3zZvE+fPjt13o9//OM4+uijSyHjF198MT784Q/H0KFD45hjjonOnTvHkiVL4r//+7/j5ZdfLtt73XXXxcUXX7xT32fHhIEBAAAAAAAAAAAAAAAAAJrQs2fPeOyxx+JDH/pQLFiwoPhu48aN8dBDDzW5fq+99opx48bFWWed1W41bRvI7dSp007/xqlTp8b5558fM2bMKL0vhKALoykNDQ3xrW99K6699tqd+jYtU9/CdQAAAAAAAAAAAAAAAAAAbzsHHnhgzJ49u9gFt0ePHk2uqauri9NPPz2efvrpGDlyZLvWs27durJ5hw4ddvrMAw44IKZNmxb33HNPHHbYYc2u69ixY5x33nnF+xAErh6dgQEAAAAAAAAAAAAAAACgkSx7Y9C8t9v9FAK3N9xwQ4wZMyamT58eCxcuLHboLXTI7devXxx99NHxjne8o6IzFy9e3KpaCt9uD7lcLi677LLieO655+Kpp56KFStWxOuvvx69evUqBoaPPfbYYiCY6hIGBgAAAAAAAAAAAAAAAABogT322COOO+644tidDRgwoDhIQ32tCwAAAAAAAAAAAAAAAAAAAJomDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKJytS4AAAAAAAAAAAAAAAAAAFKSRRb5LKt1GcnfEVAdwsAAtIt/+PuGWpcAAAAAAAAAAAAAAAAAsMurr3UBAAAAAAAAAAAAAAAAAABA04SBAQAAAAAAAAAAAAAAAAAgUcLAAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIVK7WBQAAAAAAAAAAAAAAAABASrL8G4PmuR+oHp2BAQAAAAAAAAAAAAAAAAAgUcLAAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASlat1AQAAAAAAAAAAAAAAAACQkizLioPmuR+oHp2BAQAAAAAAAAAAAAAAAAAgUcLAAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASlat1AQAAAAAAAAAAAAAAAACQknz+jUHz3A9Uj87AAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJytW6AAAAAAAAAAAAAAAAAABISVYYWeGfNMftQPXoDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRkWUQ+q3UV6d8RUB06AwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJCpX6wIAAAAAAAAAAAAAAAAAICVZPisOmud+oHqEgQEAEvBPozrVugQAAAAAAAAAAAAAAAASVF/rAgAAAAAAAAAAAAAAAAAAgKYJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRk2RuD5rkfqB6dgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEpWrdQEAAAAAAAAAAAAAAAAAkJJ8lkU+n9W6jOTvCKgOnYEBAAAAAAAAAAAAAAAAACBRwsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABKVq3UBAAAAAAAAAAAAAAAAAJCULIssy2pdRdrcD1SNzsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAInK1boAAAAAAAAAAAAAAAAAAEhJln9j0Dz3A9WjMzAAAAAAAAAAAAAAAAAAACRKZ2AAANiOO67pWusSAAAAAAAAAAAAAACAtzGdgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASFSu1gUAAAAAAAAAAAAAAAAAQEryWVYcNM/9QPXoDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRkWVYcNM/9QPXoDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRkWUQ+n9W6jOTvCKgOnYEBAAAAAAAAAAAAAAAAACBRwsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMPBubvPmzXH44YdHXV1dHH/88VX77syZM+OKK66II488Mrp06RIdOnSIgw8+OE466aS4++6749VXX61aLQAAAAAAAAAAAAAAAAAAu6pcrQugfY0ZMybmz59fte+tW7cuRo0aFffdd99b/rZ48eLimDp1anz961+PcePGxdlnn1212gAAAAAAAAAAAAAAAAAAdjXCwLuxBx54IG6++eaqfW/t2rVxyimnxJNPPrnDtatWrYpzzjknxo4dG1deeWVV6gMAdi0//FqPWpcAAAAAAAAAAAAAALxNZdkbg+a5H6ie+ip+iyoaP358XHTRRZFV8f+jXnbZZWVB4IEDB8b9998fL774Yqxfvz6eeeaZ+OxnPxt1dXWlNVdffXX86le/qlqNAAAAAAAAAAAAAAAAAAC7EmHg3Uwh/HvjjTfGJz7xidi8eXPVvjtp0qR48MEHS/Nhw4YVw78XXnhh9O7dO/bee+8YOnRo3HnnnfHQQw/FHnvsUVy3devWGDVqVGzZsqVqtQIAAAAAAAAAAAAAAAAA7CqEgXcjK1eujNNPPz2uu+66yOfzVf32mDFjSs/77LNPTJgwITp16tTk2hEjRsRNN91Umi9YsCDuu+++qtQJAAAAAAAAAAAAAAAAALArEQbeDWzatCnGjh0bhx56aEyZMqUslNuxY8d2//7MmTPj6aefLs0//elPR9++fbe7Z/To0WVrxo0b1641AgAAAAAAAAAAAAAAAADsioSBd3HLly+PQYMGFcO1q1evLr3v379/zJgxI3r27NnuNUycOLFsfv755+9wTy6Xi/POO680f+qpp2LJkiXtUh8AAAAAAAAAAAAAAAAAwK5KGHgXt2LFili0aFHZu0svvTRmz54dQ4YMqUoNU6dOLT0XOhF/4AMfaNG+448/vvScZVn84he/aJf6AAAAAAAAAAAAAAAAACqR5TOjBQOoDmHg3ciwYcPiiSeeiB/+8IfRpUuXqn137ty5pefBgwcXu/62xNChQ8vmv/vd79q8NgAAAAAAAAAAAAAAAACAXVnLUpskq66uLo477rgYPXp0fPSjH63691944YVYs2ZNaX7IIYe0eO+BBx5YDA5v2bKlOF+4cGG71AgAAAAAAAAAAAAAAAAAsKsSBt7FDRkyJKZNm1az7xfCwI3tv//+Ld5bX18fvXr1iuXLlxfnS5cubfP6AAAAAAAAAAAAAAAAAAB2ZfW1LoBd24oVK8rm3bt3r2h/t27dSs+rVq1qs7oAAAAAAAAAAAAAAAAAAHYHOgO3o0mTJsXChQvb7LyrrroqUrNu3bqyeefOnSva36lTp9Lz2rVr2yyg/PLLL1e0Z9GiRW3ybQAAAAAAAAAAAAAAAACAtiQM3I7uvffemDBhwm4dBt64cWPZfM8996xof+P1mzdvbpOa7rzzzvjWt77VJmcBAAAAAAAAAAAAAAAAbz/5LCsOmud+oHrqq/gtdkNbt24tm9fXV/Z/Utuuz/wPAAAAAAAAAAAAAAAAAABAiTAwOyWXy203HLwjW7ZsKesSXFdX12a1AQAAAAAAAAAAAAAAAADs6sqTnLSp8ePHx+6uY8eOZfMNGzZUtL/x+oaGhjap6XOf+1ycd955Fe1ZtGhRjBgxok2+DwAAAAAAAAAAAAAAAADQVoSB2Sndu3cvm7/22msV7W+8vkePHm1SU69evYoDAAAAAAAAAAAAAAAAAGBXV1/rAti19enTp2z+8ssvV7T/pZdeKj0L8AIAAAAAAAAAAAAAAAAAlNMZmJ3Sv3//qK+vj3w+X5wvXbq0oq7Aa9euLc0PPvjgdqkRAAAAAAAAAAAAAAAAoBJZlkWWz2pdRvJ3BFSHzsDslIaGhhg4cGBpPm/evBbvffbZZ8vmgwcPbtPaAAAAAAAAAAAAAAAAAAB2dcLA7LRhw4aVnhcsWBBr1qxp0b6nnnqqbD58+PA2rw0AAAAAAAAAAAAAAAAAYFcmDMxOO+WUU0rP+Xw+pkyZ0qJ9P//5z0vPe++9dxxzzDHtUh8AAAAAAAAAAAAAAAAAwK5KGJidduaZZ0bHjh1L8x/84Ac73DNv3rx49NFHS/OPfexjxUAwAAAAAAAAAAAAAAAAAAD/RxiYndalS5e46KKLSvPp06fHrbfe2uz69evXx8iRI4tdhN/0hS98od3rBAAAAAAAAAAAAAAAAADY1QgD06yDDjoo6urqSmPatGnNrv3GN74R++67b2l+7bXXxo033hhbt24tW7ds2bI49dRT4+mnny69u/DCC+P9739/O/0KAAAAAAAAAAAAAAAAgArls8iM7Y7CHQHVkavSd9jN9e3bN8aNGxfnn39+seNvYVx33XVxzz33xGmnnRbdunWLBQsWxOTJk2Pjxo2lfQMGDIg77rijprUDAAAAAAAAAAAAAAAAAKRKGJg2c95558WGDRvi0ksvjU2bNhXfLVmypBgIbsphhx0Wv/zlL6NLly5VrhQAAAAAAAAAAAAAAAAAYNdQX+sC2L2MHDky5syZEx/5yEcil2s6a961a9f4yle+EjNnzox+/fpVvUYAAAAAAAAAAAAAAAAAgF2FzsC7ucWLF1d9b6Hj7yOPPBKvvPJKPP7447Fs2bJYu3ZtMQQ8aNCgGDZsWHTo0KHVdQEAAAAAAAAAAAAAAAAAvF0IA9NuevToEeecc06tywAAAAAAAAAAAAAAAACoSD57Y9A89wPVU1/FbwEAAAAAAAAAAAAAAAAAABUQBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRkWRZZPqt1GcnfEVAdOgMDAAAAAAAAAAAAAAAAAECihIEBAAAAAAAAAAAAAAAAACBRwsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACQqV+sCAAAAAAAAAAAAAAAAACAlWVYYWa3LSJrrgerRGRgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFG5WhcAAAAAAAAAAAAAAAAAACnJ8lnk81mty0j+joDq0BkYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJEgYGAAAAAAAAAAAAAAAAAIBECQMDAAAAAAAAAAAAAAAAALTC5s2b4/DDD4+6uro4/vjjq/bdmTNnxhVXXBFHHnlkdOnSJTp06BAHH3xwnHTSSXH33XfHq6++2uqzFyxYEF/60pfife97X3Tr1i0aGhqiX79+ceyxx8att94aL774Ypv+FnZMGBgAAAAAAAAAAAAAAAAAoBXGjBkT8+fPr9r31q1bF5dcckm8973vjTvvvDPmzp0br732WmzcuDEWL14cU6dOjc9+9rMxYMCA+M///M+Kzt6yZUt8+ctfjiOOOKIY+n366aeLoeJNmzbFkiVLYvr06cWQ8Dvf+c5i4JjqEQYGAAAAAAAAAAAAAAAAgEayLDNaMN7uHnjggbj55pur9r21a9fGySefHPfdd98O165atSrOOeec+N73vtfiIPC5554bt9xyS+Tz+e2uff3114uB49GjR7e4dnaOMDAAAAAAAAAAAAAAAAAAQAXGjx8fF110UVVD0Zdddlk8+eSTpfnAgQPj/vvvjxdffDHWr18fzzzzTDGkW1dXV1pz9dVXx69+9asdnv31r389Jk6cWJr37t077rrrrmJH4EL4d968efG1r30t9tprr9KasWPHxr333tumv5GmCQMDAAAAAAAAAAAAAAAAALRAIfx74403xic+8YnYvHlz1b47adKkePDBB0vzYcOGFcO/F154YTG4u/fee8fQoUPjzjvvjIceeij22GOP4rqtW7fGqFGjip1/mzN37ty49dZbS/N3vvOdMWvWrLj88svjgAMOiA4dOsThhx8e3/nOd+Lxxx+PffbZpyxsvGbNmnb73bxBGBgAAAAAAAAAAAAAAAAAYAdWrlwZp59+elx33XWRz+er+u0xY8aUngth3AkTJkSnTp2aXDtixIi46aabSvMFCxbEfffd1+zZ3/rWt0q/p76+vtj1uE+fPk2uHT58eFk34NWrV5cFiWkfwsAAAAAAAAAAAAAAAAAAAM3YtGlTjB07Ng499NCYMmVKWSi3Y8eO7f79mTNnxtNPP12af/rTn46+fftud8/o0aPL1owbN67JdS+99FJMnDixND/jjDPi3e9+93bPPu+88+IDH/hAaf5v//ZvxY7JtB9hYAAAAAAAAAAAAAAAAACAJixfvjwGDRpUDNcWuuC+qX///jFjxozo2bNnu9fQOKxbcP755+9wTy6XK4Z23/TUU0/FkiVL3rJu8uTJsWXLlorOLrjgggvK7qhwF7QfYWAAAAAAAAAAAAAAAAAAaKTQ5TTLG9sdb5NOsCtWrIhFixaVvbv00ktj9uzZMWTIkKrUMHXq1NJzoRNx466823P88ceXngv/ff3iF7/Y7tkFJ5xwQsVnvxkqpv0IAwMAAAAAAAAAAAAAAAAA7MCwYcPiiSeeiB/+8IfRpUuXqn137ty5pefBgwcXu/62xNChQ8vmv/vd796yZs6cOaXnXr16xTve8Y4WnV3olty4jqbOpu0IAwMAAAAAAAAAAAAAAAAANKGuri6OO+64ePjhh+PJJ5+MY489tqrff+GFF2LNmjWl+SGHHNLivQceeGBZYHfhwoVlfy90C54/f36rzi6c269fv2bPpm21LP4NAAAAAAAAAAAAAAAAAPA2M2TIkJg2bVrNvl8IAze2//77t3hvfX19sdvv8uXLi/OlS5eW/X316tWxcePGVp1d0KdPn/jTn/7U5Nm0LWFgAAAAAAAAAAAAAAAAAGCnLFq0qOI9PXv2LIZVad6KFSvK5t27d69of7du3Uph4FWrVrX52W/asmVLrF27Njp37lzRGbSMMDAAAAAAAAAAAAAAAAAAsFNGjBhR8Z4xY8bE9ddf3+pvTpo0KRYuXBht5aqrrorUrFu3rmxeadi2U6dOpedCWLe9zn7zfGHg9iEMDAAAAAAAAAAAAAAAAACNZPmsOGheCvdz7733xoQJE3brMPDGjRvL5nvuuWdF+xuv37x5c7ud3dT5tJ36NjwLAAAAAAAAAAAAAAAAAIA2snXr1rJ5fX1lsdBt12dZ1m5n5/P5ivbTcjoDAwAAAAAAAAAAAAAAAAA75eGHH46BAwdWtKdnz57tVs/uIpcrj4FuG+DdkS1btpR18q2rq2uXswsaGhoq2k/LCQMDAAAAAAAAAAAAAAAAADulEAQeNGhQVb85fvz42N117NixbL5hw4aK9jdev21Yty3Pbup82k5lPZsBAAAAAAAAAAAAAAAAAKiK7t27l81fe+21ivY3Xt+jR492O7u+vj66du1a0X5aThgYAAAAAAAAAAAAAAAAACBBffr0KZu//PLLFe1/6aWXSs+9evUq+1vv3r2jrq6uTc4uBI332GOPivbTcrkK1gIAAAAAAAAAAAAAAADAbi+fZcVB89xPdfTv37/YdTefzxfnS5curahz79q1a0vzgw8+uOzvDQ0N8Y53vCOWL19e8dnbrt/2bNqWzsAAAAAAAAAAAAAAAAAAAAkqBHYHDhxYms+bN6/Fe5999tmy+eDBg9+ypvG7BQsWlELHO7JixYpYvXr1ds+m7QgDAwAAAAAAAAAAAAAAAAAkatiwYWWB3TVr1rRo31NPPVU2Hz58+HbP/utf/xp//OMf2+xs2o4wMAAAAAAAAAAAAAAAAABAok455ZTSc6Fz75QpU1q07+c//3npee+9945jjjlmu2cXTJo0qeKzC04++eQW7aN1hIEBAAAAAAAAAAAAAAAAABJ15plnRseOHUvzH/zgBzvcM2/evHj00UdL84997GPFQPC2jjrqqDjwwANL83vuuSc2bdq03bNXrlwZP/vZz0rzQsj4oIMOatFvoXWEgQEAAAAAAAAAAAAAAAAAEtWlS5e46KKLSvPp06fHrbfe2uz69evXx8iRI4tdhN/0hS98ocm19fX1ccUVV5Tmf/rTn+KLX/xis2cXzrzkkkti7dq1pXdXXnllRb+HygkDAwAAAAAAAAAAAAAAAEBj+YgsnxnbGYU7YucUuunW1dWVxrRp05pd+41vfCP23Xff0vzaa6+NG2+8MbZu3Vq2btmyZXHqqafG008/XXp34YUXxvvf//5mzx41alT069evNL/jjjuK7zZs2FC27tVXX43zzjsvJk2aVNYV+Nxzz63gV9MauVbtAgAAAAAAAAAAAAAAAACgKvr27Rvjxo2L888/v9idtzCuu+66uOeee+K0006Lbt26xYIFC2Ly5MmxcePG0r4BAwYUw73bs88++8RPf/rTOPnkk+P1118vvivsefDBB+MjH/lI9OnTJ/7yl7/EI488EuvWrSvt69GjR9x///3t+Kt5kzAwAAAAAAAAAAAAAAAAAEDiCl15C916L7300ti0aVPx3ZIlS4qB4KYcdthh8ctf/jK6dOmyw7OPPvro+K//+q8455xzYu3atcV3K1eujB/96EdNri8EhKdMmRL9+/ffqd9Ey9S3cB0AAAAAAAAAAAAAAAAAADU0cuTImDNnTrFjby7XdL/Yrl27xle+8pWYOXNm9OvXr8Vnf+hDH4pnn302LrzwwujQoUOTazp27BiXX355/OEPf4ghQ4a0+ndQGZ2BAQAAAAAAAAAAAAAAAABaYfHixVXfW+j4+8gjj8Qrr7wSjz/+eCxbtqzYzbcQAh40aFAMGzas2TDvjuy///5x//33x9133x3Tpk2L559/PlavXh377rtv8bt/+7d/G507d27V2bSeMDAAAAAAAAAAAAAAAAAAwC6mR48ecc4557TL2Z06dSp2HyYNwsAAAAAAAAAAAAAAAAAA0EhW+E+W1bqM5O8IqI76Kn0HAAAAAAAAAAAAAAAAAACokDAwAAAAAAAAAAAAAAAAAAAkKlfrAgAASMd//uCQWpcAAAAAAAAAAAAAAABAIzoDAwAAAAAAAAAAAAAAAABAooSBAQAAAAAAAAAAAAAAAAAgUblaFwAAAAAAAAAAAAAAAAAAKcnns+Kgee4HqkdnYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACAROVqXQAAAAAAAAAAAAAAAAAApCTLZ8VB89wPVI/OwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAicrVugAAAAAAAAAAAAAAAAAASEqWRZZlta4ibe4HqkZnYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACAROVqXQAAAAAAAAAAAAAAAAAApCTLssjy+VqXkfwdAdWhMzAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKJytS4AAAAAAAAAAAAAAAAAAFKSz2fFQfPcD1SPzsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAInK1boAAAAAAAAAAAAAAAAAAEhJlmXFQfPcD1SPzsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAInK1boAAAAAAAAAAAAAAAAAAEhJlmWR5bNal5H8HQHVoTMwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJEgYGAAAAAAAAAAAAAAAAAIBECQMDAAAAAAAAAAAAAAAAAECicrUuAAAAAAAAAAAAAAAAAACSks8iy2e1riJt7geqRmdgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJEgYGAAAAAAAAAAAAAAAAAIBE5WpdAAAAAAAAAAAAAAAAAACkJJ9lkc/ytS4j+TsCqkNnYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACAROVqXQAAAAAAAAAAAAAAAAAApCTLZ8VB89wPVI/OwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAicrVugAAAAAAAAAAAAAAAAAASEmWZZHls1qXkfwdAdWhMzAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKJytS4AAAAAAAAAAAAAAAAAAFKSZVlx0Dz3A9WjMzAAAAAAAAAAAAAAAAAAACRKGBgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKJytS4AAAAAAAAAAAAAAAAAAFKS5fORz+drXUbydwRUh87AAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJytW6AAAAAAAAAAAAAAAAAABISZZFZPms1mUkf0dAdegMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACARAkDAwAAAAAAAAAAAAAAAABAooSBAQAAAAAAAAAAAAAAAAAgUcLAAAAAAAAAAAAAAAAAAACQqFytCwAAAAAAAAAAAAAAAACAlGRZvjhonvuB6tEZGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACARAkDAwAAAAAAAAAAAAAAAABAooSBAQAAAAAAAAAAAAAAAAAgUblaFwAAAAAAAAAAAAAAAAAAKcnyWXHQPPcD1aMzMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAiRIGBgAAAAAAAAAAAAAAAACARAkDAwAAAAAAAAAAAAAAAABAonK1LgAAAAAAAAAAAAAAAAAAUpLls+Kgee4HqkdnYAAAAAAAAAAAAAAAAAAASJTOwAAAsAuY/shxtS4BAAAAAAAAAAAAAACoAZ2BAQAAAAAAAAAAAAAAAAAgUcLAAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIVK7WBQAAAAAAAAAAAAAAAABASrLIIp/la11G8ncEVIfOwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJEoYGAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAAicrVugAAAAAAAAAAAAAAAAAASEmWz4qD5rkfqB6dgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkChhYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAAAJCpX6wIAAAAAAAAAAAAAAAAAICVZPl8cNM/9QPXoDAwAAAAAAAAAAAAAAAAAAIkSBgYAAAAAAAAAAAAAAAAAgEQJAwMAAAAAAAAAAAAAAAAAQKKEgQEAAAAAAAAAAAAAAAAAIFHCwAAAAAAAAAAAAAAAAAAAkKhcrQsAAAAAAAAAAAAAAAAAgJRkWRZZPqt1GcnfEVAdOgMDAAAAAAAAAAAAAAAAAECihIEBAAAAAAAAAAAAAAAAACBRwsAAAAAAAAAAAAAAAAAAAJAoYWAAAAAAAAAAAAAAAAAAAEiUMDAAAAAAAAAAAAAAAAAAACQqV+sCAAAAAAAAAAAAAAAAACAlWZZFluVrXUbydwRUh87AAAAAAAAAAAAAAAAAAACQKGFgAAAAAAAAAAAAAAAAAABIlDAwAAAAAAAAAAAAAAAAAAAkShgYAAAAAAAAAAAAAAAAAAASJQwMAAAAAAAAAAAAAAAAAACJytW6AAAAAAAAAAAAAAAAAABISZbPIp/Pal1G8ncEVIfOwAAAAAAAAAAAAAAAAAAArbB58+Y4/PDDo66uLo4//viqffNnP/tZXHzxxXHEEUdE9+7dY88994z99tsv/uZv/iYuv/zymDx5csXnjhgxovg7WjOefPLJdvmtvEFnYAAAAAAAAAAAAAAAAACAVhgzZkzMnz+/at97+OGH44orrojly5e/5W+vvPJKcfz+97+Pf/mXf4kjjzwyfvSjH8W73/3uFp09e/bsdqiYtqAzMAAAAAAAAAAAAAAAAABAhR544IG4+eabq/a9G264Ic4+++wmg8BNmTNnThx11FExceLEHa5ds2ZNLF68uA2qpD0IAwMAAAAAAAAAAAAAAAAAVGD8+PFx0UUXRZZlVfneT37yk2IX4sbOOeecmDJlSqxcuTI2bdoUy5Yti5/+9Kfxnve8p7Rmw4YNccEFF8QzzzxTUVfgxx57rPjbWjqGDx/exr+YxoSBAQAAAAAAAAAAAAAAAABaoBB8vfHGG+MTn/hEbN68uSrfLHTtvfrqq0vz+vr6Yjh4woQJ8eEPfzh69OgRe+65Z+y///7xyU9+Mp566qn4zGc+U1q/fv36uOKKK7b7jVmzZpXNhwwZ0g6/hNbKtXonAAAAAAAAAAAAAAAAAOyGsiwfWT5f6zKSv6O3m0IH3pEjRxa78VbTfffdFy+//HJp/pWvfCX+7u/+rtn1uVwu7rrrrvjDH/4QM2bMKL77zW9+E9OnT49jjjlmh52B+/XrF926dWvT38DO0RkYAAAAAAAAAAAAAAAAAKAZmzZtirFjx8ahhx5aFgTeZ599omPHju3+/fHjx5eeO3ToEF/60pd2uKfQPfirX/1q2btJkya1qDOwrsDpEQYGAAAAAAAAAAAAAAAAAGjC8uXLY9CgQTF69OhYvXp16X3//v2LXXd79uzZrt/P5/Pxu9/9rjQfPnx4dO3atUV7jzrqqLL5ggULmly3ZcuWYhfhNwkDp0cYGAAAAAAAAAAAAAAAAACgCStWrIhFixaVvbv00ktj9uzZVQnNvvLKK3HYYYfFfvvtV5wfdNBBLd5b6CLc2Kuvvtrkuvnz58fGjRtLc2Hg9ORqXQAAAAAAAAAAAAAAAAAAQOqGDRsWt9xySxx77LFV+2ah8/AzzzxTfC4Edl9//fUW7y2EfLc9qymzZs0qmw8dOrRVtdJ+dAYGAAAAAAAAAAAAAAAAAGhCXV1dHHfccfHwww/Hk08+WdUg8LYaGhqia9euLV4/fvz4svnhhx/e5LpCl+M3derUKQYMGBBz5syJa665Jt73vvdFt27dit8+4IAD4sQTT4zbbrut2LGY6tEZGAAAAAAAAAAAAAAAAAAayfJZcdC8t8v9DBkyJKZNmxa7mkJY98477yx7d9ZZZ+2wM/B+++0XZ599dkycOPEt65YtW1Ycjz32WHz729+O66+/Pq666qp2qJ5t6QwMAAAAAAAAAAAAAAAAALAb+cIXvhCrV68uzYcNGxbvec97dtgZePHixU0Ggbe1Zs2aGD16dFx88cWxdevWNqqa5ugMDAAAAAAAAAAAAAAAAADslEWLFlW8p2fPntGrV69Wf3PSpEmxcOHCaCu7S5fbsWPHxk9/+tOyd9/97nebXPvCCy/EihUr3vL+tNNOi8svv7wYIC78d7Ry5cqYPn16fP/73y/++00//vGPi92Eb7vttnb4JbxJGBgAAAAAAAAAAAAAAAAA2CkjRoyoeM+YMWPi+uuvb/U377333pgwYUK0ld0hDPyTn/wkrr766rJ3V155ZRx33HE77ApcsPfee8e4cePiggsuKHu///77x8c//vHiuPXWW+PLX/5yZFlW/Nvtt98eZ5xxRpx44olt/nt4Q/3//zcAAAAAAAAAAAAAAAAAALtwEPhTn/pU5PP50rujjjoqbrnllmb3dO7cuRj8HT58ePTu3Tv+9V//9S1B4G1dc8018cUvfrHs3Te/+c02+AU0R2dgAAAAAAAAAAAAAAD4f+3dB5RVRbov8CInAwIGVBgBHRFEBSNiQjGhIgYwoo6OiorZMYxjVkxjZDDMqKiMcRxFzIooGJBBxYSogAkQUASRDEq/VXu9Pvcc6HAauund8PutxbVrd+06BXet9767z/7XFwAAoOq64447wrnnnpvp1httscUWYfDgwaFWrVrF3tepU6fkT1ldffXV4cEHHww///xzMn7nnXfCt99+GzbZZJPl/BtQEmFgAAAAAAAAAAAAAAAAAMgSA5UFBf/XXZVlZYdOo0GDBoVNN920TGusu+66K7SHp556Kqzu4v8eLrroomW6/8Yg8NChQ0Pjxo0r5HPr168fevToEe65557Mtddffz2cdNJJFfJ5qzthYAAAAAAAAAAAAAAAAABghcQgcNu2bSt7G6uVefPmhWOPPTY888wzOde32Wab8Morr4T11luvQj9/xx13zAkDf/PNNxX6easzYWAAAAAAAAAAAAAAAAAAgCpkypQpoVu3buH999/Pub7bbruFwYMHh7XXXrvC97D++uvnjKdPn17hn7m6ql7ZGwAAAAAAAAAAAAAAAAAAID9jx45NuvIuHQTu2bNnePXVV1dKEDgqKCjIGdepU2elfO7qSGdgAAAAAAAAAAAAAAAAAIAq4MMPPwz77LNP+Pnnn3Oun3/++eHmm28O1apVK9N68+bNCz/++GOYNm1aWLJkSejYsWPe98b7sjVp0qRMn03+hIEBAAAAAAAAAAAAAAAAAFLu448/Dl26dAkzZ87MXKtevXro169fOP3008u83ty5c8Oaa66Z6fC78cYbh4kTJ+Z9/6hRo3LGHTp0KPMeyI8wMAAAAAAAAAAAAAAAAABkKVhSkPyheP59Vq4ffvgh7L///jlB4Lp164bHHnssdO/efbnWbNCgQWjZsmWYMGFCMp40aVL4/PPPQ5s2bUq9d/HixeHZZ5/NjGvVqhU6deq0XPugdNXzmAMAAAAAAAAAAAAAAAAAQCVYsmRJ6NWrV5gyZUrmWv369cMLL7yw3EHgQgceeGDOuH///nnd989//jNMnjw5Mz7iiCNCw4YNV2gvFE8YGAAAAAAAAAAAAAAAAAAgpfr16xeGDh2aGVerVi088sgjYc8991zhtf/85z+H6tWr54R8hw8fXuI9I0eODH/5y19yugJfdNFFK7wXiicMDAAAAAAAAAAAAAAAAACwkm2yySZJsLfwz5tvvrnMnPnz54frr78+59q55567wh2BC2255ZbhlFNOyYx/++23pFvwo48+GgoKCnLmxvGAAQNCly5dkn0VuvTSS5N1qDjCwAAAAAAAAAAAAAAAAAAAKTRw4MAwbdq0nGu33nprTog43z8xfFyUW265JXTs2DEznj17djjmmGNC69atQ+/evZOw70knnZTcf+KJJ4Y5c+Zk5h5//PHhsssuq8B/AaKa/hkAAAAAAAAAAAAAAAAAANLnhRdeqPDPqF+/fnjxxReTYO/gwYMz17/66qvkT1GqV68ezjrrrCRIHH+mYvkXBgAAAAAAAAAAAAAAAIBsBUtCwRJ/SvoT/42oeBMmTFgpn9OwYcPw7LPPhieeeCJsu+22xc6rVatW2H///cOIESPCbbfdJgi8kugMDAAAAAAAAAAAAAAAAACwHL799tsKvfezzz4LK1PPnj2TP5MnTw7vvvtumDJlSpgzZ05o0qRJ2HDDDcMuu+ySBIdZuYSBAQAAAAAAAAAAAAAAAADI2GijjUKPHj0qexv8f/ovAwAAAAAAAAAAAAAAAABASukMDCGEhQsX5ozHjx9faXsBAAAAAAAAAAAAAACoaEtnJ5bOVsDqbv7cyZW9hdTzbwQrjzAwhBAmTpyYM+7evXul7QUAAAAAAAAAAAAAAKAyshUdOnSo7G1Aanzx/t8qewsAGdX/70cAAAAAAAAAAAAAAAAAACBNhIEBAAAAAAAAAAAAAAAAACClqhUUFBRU9iagsv3yyy9h2LBhmXGzZs1CnTp1KnVPVIzx48eH7t27Z8aDBg0Km266aaXuCQAACqlXAQBIOzUrAABpp2YFACDN1KtA2ixcuDBMnDgxM959991Dw4YNK3VPUJkWLFgQJkyYUNnbqNJatWoV6tatW9nbgFVSzcreAKRBLFYPPvjgyt4GlSA+QGnbtm1lbwMAAIqkXgUAIO3UrAAApJ2aFQCANFOvAmnQoUOHyt4CpEYMsfr/m4G0ql7ZGwAAAAAAAAAAAAAAAAAAAIomDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAACklDAwAAAAAAAAAAAAAAAAAAClVs7I3ALAyrbvuuuGKK67IGQMAQFqoVwEASDs1KwAAaadmBQAgzdSrAADA8qpWUFBQsNx3AwAAAAAAAAAAAAAAAAAAFaZ6xS0NAAAAAAAAAAAAAAAAAACsCGFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgAAAAAAAAAAAAAAAAAABIKWFgYKUaP358qFOnTqhWrVq48sorl2uNt956K5x55pmhXbt2oXHjxsl6TZs2Dfvtt1+48847w4wZM8p937///nvo2LFjsu/l3fuiRYvCI488Eg499NDQvHnzUK9evdCwYcOw5ZZbhuOOOy4MGTIkLFmypNz3DgDAqlezfvXVV+Haa68NnTp1Cs2aNUvWX2eddcLWW28dzjrrrPDpp58u17pqVgCA9Et7vTplypRwzTXXhD322CNZM6699tprhz/+8Y+hV69e4amnnlrumlK9CgCQHrHueu6558Ipp5wSttpqq9CkSZNQq1at0KhRo9C6detwwgknhCeeeCL5rr2sYj168803h7322iusv/76oXbt2sl/t91223DBBReEzz77bLn3PXfu3HDPPfeErl27hg033DCpV+Pe47PV3r17h/fee2+511avAgCkS1WtWceNGxcuv/zy0Llz57DRRhsldWWDBg2SGnPfffcNN954Y5g6deoK/ZscddRRoWXLlsm6a665ZvLvcfjhh4dBgwaFxYsXL/feAQCAilWtoKCgoII/AyARH5jEhxPxRbPoiiuuKNPLat9//33y5dtLL71U4rz4Yll8EHLuuecmL8SVh759+4ZLL700My7r3t9///1w7LHHhi+//LLEebvttlv497//nQQ6AABY+dJes/7666/hsssuC/379y/xC8m45oknnpgEOerXr5/X2mpWAID0S3O9Gr9uigfWXHfddWHhwoUlzo3B4FhTbr/99nnvXb0KAJAeb7/9djjppJOSQwtLEwMG9957b+jSpUtea8dark+fPmHWrFklzjvttNPCLbfckgQj8vXKK68kz01/+OGHEufFMO99992XHMCYL/UqAEC6VMWadebMmeGMM84Ijz/+ePK8tSR169ZNnt9effXVoWbNmnkfNBlr1pEjR5Y4Lx5m89hjjyX/BQAA0kVnYGCliQ8/Cl9SK6sPP/ww7LjjjqW+pBbFByznn39+6NatW6kvneXj448/DlddddVy3//mm28mXTBK+9IvGj58eOjQoUOYMGHCcn8eAACrZs36888/h9133z0J+JZ2MnH8YvD+++9PTgWeP39+qWurWQEAqoa01qux/jzmmGOSAHE+8+MLeLvsskt44YUX8tq7ehUAID0GDBiQ1Gb5hCqir7/+Ouy3337h7rvvLnVu7KzWq1evUkMVUVxvzz33zPv5agxUHHDAAaUGgaOnn3467LDDDskz2XyoVwEA0qUq1qwTJ04M7du3T0K4+fT5WrBgQbj++uuTdwLiz6UZM2ZM6NSpU6lB4Ch2NY718HvvvVfqXAAAYOUSBgZWivPOOy/cc889y3XvlClTki/lpk6dmrkWu5vFrhdjx45NHmTE38XT1jbffPPMnOeffz4cccQRK7TvRYsWheOOOy757/KYNGlSOPzww8PcuXMz1+Ke3nnnnTB79uwwffr0MGjQoJwOGPFafMluzpw5K7R3AABWnZo13r/33nuHjz76KHOtefPm4Z///Gdyem8M/MYvMuMhNg0aNMg57fjss88ucW01KwBA1ZDmerVv377JS2qFateuHS6++OLkpbG4duxoEYO/O++8c2ZOfObas2fPUl/IU68CAKTHG2+8EU455ZScwwo7d+4cnnnmmaSejDXetGnTkvoshh4KxfnxYJuSDqZ58cUXw0UXXZRTU/71r38Nn3/+efL8M9aFMUyxwQYbZObEcELcT2nic9UTTjghs+9q1aolXdrigTnz5s3L1MJ//OMfM/fE5649evQIS5YsKXFt9SoAQLpUxZo1PkONYeTvvvsuc61p06ZJV+EvvvgiqVl//fXXMGrUqOQ5cewKXGjo0KHhxBNPLHH9WJd27949/Pjjj5lrsQvya6+9ljy7/eWXX8KQIUOSdxIKxb/PIYccktdhOgAAwEpUAFCBZs2aVXDooYfGY8qW+XPFFVfktUbXrl1z7mvevHnBl19+WeTc+fPnFxx00EE58++6667l3v/FF1+8Qns//PDDc+676aabipy3aNGigqOOOipn7lVXXbXc+wYAYNWqWc8777yc+XvvvXfBnDlzipz7wQcfFDRs2DAzt1q1agUfffRRsWurWQEA0i3t9eqUKVMK6tevn5lbr169grfeeqvIub/99lvB8ccfn7N2t27dSty7ehUAIB0WL15c0KZNm5x6q2/fviXec/XVV+fM32STTQoWLFhQZA3arFmzzLy6desWDBs2rMg1p06dusw+hg8fXuwelixZUrDDDjvkPC99/PHHi5z766+/Fuyxxx45az/00EMl/h3VqwAA6VFVa9brrrsuZ27Hjh0Lpk+fXuz8Dz/8sKBJkyY597z88svFzr/gggty5p5xxhlJnby0eG3puX/605+KXRcAAFj5qsX/sTLDx8DqI56uG0/KjSfmFiV2nbjyyitLXOP999/POSG3Xr164YMPPghbbLFFsffEE8k6dOiQnIgWNWnSJHzzzTdhjTXWKNP+R4wYEXbdddecE+LKsvdPP/00bLXVVplxPFktni5XnIULF4aOHTuG0aNHJ+O11lor2XejRo3KtG8AAFatmvXbb79NOlIsXrw4Gbdp0yaMHDmyxPr2/vvvD3/+858z4zPOOCP84x//WGaemhUAIN2qQr3ar1+/cNZZZ2XGN9xwQ053jKXFzhutW7dO1otq1KiRdOJo3LjxMnPVqwAA6TF48OBw8MEHZ8ZHH310eOSRR0q976ijjgqPP/54Zjxw4MBw7LHH5syJzy7PPPPMzPj2228PZ599drFrxhqvXbt2mW68u+yyS3jrrbeKnPv888+Hgw46KDM+55xzwm233Vbs2rEzWqxBY1e3qEWLFuGrr74KNWvWXGauehUAIF2qYs0a30+NXYB/+umnZLzOOuuEsWPHhvXXX7/EPb/yyitJN+FCe+21V9Ldd2nTp08PG2+8cVKLRttuu2343//+F6pXr17kujFWEOvnF154IfP8dsyYMWHzzTcvcT8AAMDKUXQlD7AC4sODPn36JC+YZb+ktu6665Z5rQcffDBnfOGFF5b4klrhy2zXXnttzn4effTRMn3uvHnzwvHHH58JAu+///6hrP71r3/ljC+77LIS59epUydcd911mfGvv/4a/vOf/5T5cwEAWLVq1rvuuisTBI7++c9/lnrQTa9evZIvCQu9/PLLRc5TswIApFNVqlfffffdnPExxxxT4tq1a9dOXq4rFJ/Bjho1qsi56lUAgPR46qmncsaXX355Xvf97W9/yxkXhgqyxWeeheJBNL179y5xzRjQjQcgFnr77bfDl19+WeTc7LVr1apV4sE1UXyu+te//jUnxPH6668XOVe9CgCQLlWxZh02bFgmCBydeuqppQaBo3333Tdst912mfHw4cPD7Nmzl5n38MMPZ4LAUax1iwsCR9WqVQs33XRTzvPbpZ8xAwAAlUcYGChXr732Wth0001D//79w2+//Za5vueeexYbQCjJ0KFDcx4ynHbaaXndF093yw5IlPULtPhC3Lhx4zIPZbIfbuTr2Wefzfy82WabJZ00SrPPPvvkdMDwxR8AQPmrajXrY489lrPHTp06lbp2DFh069YttGzZMuy4446hbdu2OYHiQmpWAID0qWr16o8//pgzzudFtT/84Q854+yX3bKpVwEA0mPkyJGZnzfZZJO8O4PFZ5OxA26h2GU3Wwzbxg67hQ455JAkNFua2OUtW1F13/z588Orr76aGe+xxx5hgw02KHXtnj17Jh3QSlo7Uq8CAKRLVaxZs/ccZXf7Lc3OO++c+Tm+D/Dtt9+WWLPG570HHHBAqeu2adMmbLPNNsWGrAEAgMojDAyUqzFjxoRZs2ZlxvXr1w+33npr8gJbo0aNyrTWkiVLck5Ciw8Y8nmRLKpZs2bOF20jRoxI1svHkCFDku5rhS/HDRgwoNTOa0ubMGFC+P777zPjzp0753Vf/EJx1113zTn1LXYpBgBg9axZP/nkkzBp0qScjr/5iqfzxrr0vffeS77gi10vsqlZAQDSqSrVq9HSL71l15jFmTp1as44+0W7QupVAID0KCgoSDrmxiBt7CIWgxVlUbdu3czPv/zyS7GH15Sl7ttqq62SPRV68cUXl5nz7rvv5nRBy3ftGNZt165diWurVwEA0qWq1qxRPOS78PPLsu/sPRe17wULFiTPdbPDw/mEmAsP0ik0fvz4ZQLSAABA5RAGBipEDNEeddRRyYtr5557bvJwpaxmzpyZ83JZ7NBbFtkvtc2dOzevhxHxJbsTTzwxeTAUnXnmmWH33XcPZRVDG9myT0krTfbc2Pnjo48+KvPnAwCwatSs77zzTs547733DuVFzQoAkG5VoV4tfKEt22OPPVbimnE/Tz75ZGYc/1477LDDMvPUqwAA6apN46GDU6ZMSQIF//3vf/O+d8aMGeGnn37KjNddd91yqfvinrbeeuvMePTo0eH3338vl7WXnhv/3j/88EOFrK1eBQBYvWvWSy65JDloZv78+ckemjVrlve+sw+CLGrfY8eOTToGl3XfRc19//33874XAACoOMLAQLmqXbt2OOaYY8IHH3wQHn300TKfrpZt0aJFOeMGDRqU6f54om627777rtR7zjrrrDBx4sTk58022yxcf/31YXl88cUXOeO4Vr7iKW/Zxo0bt1x7AACg6tesH3/8cc4XdxtttFEoL2pWAIB0qkr1ahQDy/GltkJ9+/ZNOrAV5+KLL04CzoV69OgRmjZtusw89SoAQDrVqlUrNGrUKO/5Tz/9dOYw7qh169bF1n2xrmzVqtVy1X0x8DFp0qRi1y7vmlK9CgCQXlWpZs3WpEmTvA+FjF2AhwwZktMl+A9/+EOx+47UrAAAUPUJAwPl6vTTTw///ve/Q/v27Vd4raUfxsTT18oi+6S2aPLkySXOHzRoUHj44YeTn+MDlQEDBoT69euH5RFPl8u24YYb5n3vBhtskDMu6eEPAACrds06fvz4zM/ZX9zF03ufffbZcOSRRyZfRMZQxzrrrBPatWuXdI3LDhEXR80KAJBOValejWJni9NOOy0zjh0s9txzz3DppZeGzz//PCxcuDDMmTMnvPHGG6Fr167h5ptvzsyNL83deeedRX62ehUAoOqLh9PcdNNNOde6detWbN0Xww/xcJzyqvsqsqZUrwIArBoqu2ZdXrfddluYO3duZrz33nuHevXq5cxRswIAwKqnZmVvAKA4derUSR4oTJ06NRmPHj06OX0tu8tEST766KOc8a+//lriS22nnnpqZhwDFJ06dVruvf/4448547KcMhdDHCvygh4AAKtOzZr9hVrhl22jRo0KJ554Yvjss89y5s6bNy85/Tdej4GKE044IfTr16/YA27UrAAAq76V9Yz1jjvuCEuWLAn33HNPMo4B4NghOP4pziGHHBLuvffesO666xb5e/UqAEDVd9VVV+V0EGvevHk44IADiq37ylLz5VP3Za8da+OyHAZelrUj9SoAQNVU2TXr8ojvBNx4440517IPbCykZgUAgFWPzsBAqu2+++6Zn6dPnx5ee+21vO57/fXXw88//5xzbcGCBcXOj0HgwgcfsbPatddeG1ZE7HSRbc0118z73jXWWCNnPHv27BXaCwAAVbdmzf597P47ePDg0LFjx2WCwEuLQYwHHngg2dvSn1FIzQoAsHpYGc9Ya9asGe6+++4wbNiwvDoa9+nTJzzyyCPFBoEj9SoAQNX2zDPPhOuvvz7n2jXXXJOEcour+8pS8+VT962stcu6vnoVACAd0lCzllV8ZnvwwQcnBzIW6ty5c9h///2XmatmBQCAVY8wMJBqPXr0yBlfdNFFOQ8xivL777+Hv/3tb8tcX7x4cZHzBw4cmDzUiWrUqBEefPDBULdu3RXa99J7rFWrVt73Lj23uH0DALDq16zZX6iNHTs2HHnkkcm91atXT7oDv/XWW0k34Llz5yZd2y6++OJQr169zD3vv/9+OOqoo5J7lqZmBQBYPayMZ6zRK6+8ktSjsftwaf7xj3+EzTbbLDnspjjqVQCAqiseLHP00UeHgoKCzLXu3buH4447rsS6ryw1Xz5138pau6zrq1cBACpfWmrWspg1a1bYb7/9wtdff53Twff+++8vcr6aFQAAVj3CwECqHXLIIWHzzTfPjGPAIQYgiutAEV9SO+WUU8J77723zO9q1669zLVJkyaFs846KzP+y1/+EnbccccV3vfSYYsY1sjX0nNjVzcAAFbPmjX7C7VPPvkkzJ8/PzmtNwYt4hd6u+yyS1h77bVD/fr1w9Zbb52cWjxy5MjQtGnTzH2x89t9991X5D6yqVkBAFZNFf2MNTrvvPOSl9BGjBiRjJs1axb69esXxo8fn3xO7FYxZMiQ5OW6atWqJXMmT56cvFwXg8HF7SObehUAoGqIdV+3bt1y6s1NN900OZS7tLqvLDVfPnXfylq7rOurVwEAKleaatZ8zZw5M+y7777JgeDZaz/00EOhRYsWRd6jZgUAgFWPMDCQaoUPK7JfMhs0aFDYcsstk0DDxIkTk4DEtGnTwpNPPhm233778MADDyTzdtppp5y16tSpkzOOJ7rFbmqxk1rUtm3bcNVVV5XLvmvWrJkzLqoTW3F+++23EvcNAMDqU7MWJX4B2aVLl2J/365du/DEE09kQhZR3759l6lJ1awAAKuHiq5Xr7766nDbbbdlxvvss08YM2ZM6NOnT2jVqlVyT6NGjcJee+0VHnnkkfDcc8+FBg0aZJ7Rnn322eHNN99cZl31KgBA1fPUU0+FAw44IMybNy9zbYMNNggvv/xycqhhUbLrvrLUfPnUfStr7bKur14FAKg8aatZ8/HDDz+E3XbbLTkYPFs8kPGggw4q9j41KwAArHqEgYHUi516BwwYEGrVqpW5NmHChHDyySeH5s2bJy+xxYcxRxxxRBg9enTy+65du4ZrrrkmZ53YQS3b3XffnXRJK3zosfQLcSsidmbLVlyXjaIsPddDFACA1bdmXbo+jV/wHXrooaXuZ9ddd02+wCz0/fffhw8++CBnjpoVAGD1UVH16rhx48K1116bGbdu3To8/fTTy8zLFuvUuJfsjhIxELw09SoAQNVyxx13JPXkokWLMtdijfnGG28kh8QUJ7vuK0vNl0/dt7LWLuv66lUAgMqRxpq1NJ999lnYeeedk/9miwc0nn766SXeq2YFAIBVjzAwUCUcffTR4ZVXXgktW7YscV58mS2+fDZ48OAwZ86cnN81bdo08/P48ePDhRdemBlfcsklYdttty23/cZOF9l+/fXXvO9dem7jxo3LbV8AAFSdmjVaa621csY9e/bMez/du3fPGQ8fPjxnrGYFAFi9VES9eu+99yZdhQtdd911ma6/JenRo0fYc889M+NPPvkkvPfeezlz1KsAAFVD7C7Wp0+fcM455yQHvRT6wx/+kDyTjAfGlCS77itLzZdP3Ze99uzZs0NBQUGFrF3U/BVZGwCA1admLUl8ntupU6fw3XffZa5Vr149aYQT/y6lUbMCAMCqRxgYqDI6d+4cxo4dG+67776ke8RGG22UdKxYY401QocOHcLFF18cvvzyy3DppZeGGjVqhB9++CHn/g033DD5b3yYc/zxx4e5c+cm46233jpcdtll5brXeFpctp9++inve6dNm5YzXm+99cptXwAAVI2atbhacKuttsp7L0vPXfqz1KwAAKuf8q5Xhw4dmtNl4sADD8x7L8cee2zOeNiwYTlj9SoAQPrFgECsAfv3759zvW3btuHtt98Om222WalrZNd9Zan58qn7steOAZCZM2dWyNqRehUAIJ3SXrMWJwZ+476zQ7nxWe6jjz4aevfundcaalYAAFj11KzsDQCURXyYcdJJJyV/SvPRRx9lfo4vrhWe3vb999+Hd999N/O7jz/+OFm3LK666qrkT6ErrrgiXHnllZlxixYtcuZPmjQpeZkuH3FutqXXAgBg1a9ZC22yySbhs88+y4zz6bJWqGHDhjnjpV90U7MCAKyeyrNeHT9+fObnVq1alek5azykMVt2d4tIvQoAkG5TpkwJ++23X/jkk09yru++++5h0KBByzyfLE6s1UaMGJHp3hvDDmuttVaZ675q1aolnd2WXnvp+Ut3R8tn7aLWUq8CAKRfVahZl1ZQUBAuuuiicPPNN+dcX3vttcMzzzyTHPiYr6Jq1nypWQEAIJ10BgZWWSNHjsz8vPnmm4e6deuutM/ecsstc8ax20a+vvjiixLXAgBg9alZ42nE2aZOnZr32nPnzs0ZLx0kVrMCALCi9eqCBQsyP9eqVatMa8duxNkWLVqUM1avAgCk17fffht23nnnZUIVRx11VHjllVfyDlWUZ90XwwkV9Qw0HnqzdMc49SoAQLpVlZo125IlS8Kf//znZYLAzZs3T7oYlyUIXJ77LmotAACgcggDA1XCwoULw+TJk8v0ICf7IU6XLl3CyrTNNtvkdMEYNWrUcr1gt+GGG4ZmzZqV+/4AAKgaNetOO+2UM87uElyar7/+OmfcsmXLnLGaFQBg9VIR9WqTJk0yP3///fdl2s+0adNyxuutt17OWL0KAJBOEydODHvssUdSL2a75JJLwiOPPBLq1KlTpvV23HHHnHG+dd+sWbPCl19+Weyz1BVZO3Zjy5673XbbhZo1a+bMUa8CAKRXVapZs5188snhgQceyLnWvn378N577y1XGLdp06Y5teby1qyx7u3QoUOZPx8AACh/wsBAqt15553JCWyx48TGG2+cdye0gQMH5owPPvjgzM+bbLJJ8uVdWf588803OetdccUVOb+/8sorc35fr169sOuuu2bGQ4YMSV62K80PP/wQRo8enRnvs88+ef19AQBYtWrWQnvuuWfOC2VPPvlk3vt6/fXXc8ZLf7GoZgUAWD1UZL0auwUXmj59enj//ffz3tfw4cNzxm3bts0Zq1cBANJnzpw5Yb/99gvfffdd5lr16tVD//79Q9++fUO1atXKvGanTp1C/fr1M+MXXnghr/tefPHFpHNaSXVfPCCxVatWZV47hi1ifVvS2upVAIB0qmo1a/Y7qUsHgeMBjcOGDUtCvcsr+zM//PDDMGXKlFLvWbBgQc77BrHDckkdjQEAgJVHGBhItRYtWiSnoxUaNGhQqff88ssv4fbbb8+MW7duHTp37hxWtiOOOCLzc/w7LP3yXFH69euXhIsLHXvssRW2PwAA0l+zrrXWWqFbt26Z8QcffJB8YVian3/+Oaf+3GijjYo8ZVjNCgCw6qvIevWAAw5YJnicj/gy2T333JMZ16hRI3lBb2nqVQCAdOnTp0/4/PPPc+q4hx9+OJx++unLvWbsyta9e/fM+NVXX83pnlZS3VcoBjMOOeSQIudl15RffPFFEtotTXZdG8MixxxzTKlrq1cBANKhKtasQ4cODddee23OtfieQAwdr7nmmmFFZNessQ6NoejSPPTQQznPlNWsAACQHsLAQKrFk81iAKLQTTfdFObNm1fs/N9//z0cffTRYcaMGZlrl1122XKd5raijjrqqNCkSZPM+KKLLgpfffVVsfPfeuutcOutt2bG7dq1SzrBAQCwetesF154Yc7vevfuHSZNmlTi+ieeeGKYPXt25tqZZ56ZnHa8NDUrAMCqryLr1RNOOCFn7Rh+ePLJJ0vcT3zh7LTTTsupaeM6jRs3XmauehUAID2effbZJBSQ7bbbbis2KFsW8fllodg5rVevXmH+/PnFzr/xxhvDiBEjMuM//elPOXVptlNPPTXUrl07Mz7llFPCTz/9VOzajz/+ePKnUNeuXcOmm25a5Fz1KgBAulTFmjU+qz3uuONyOgh37Ngxec6aXceuyPPhNm3aZMZ///vfwzvvvFPs/BhyvvjiizPj9ddfPxx55JErvA8AAKB8CAMDqVavXr3kxbBC33zzTTj44IOL/HLu66+/Tr4oe+mllzLX9tlnn+TFtcqwxhprhCuuuCIzji/PxQcr7777bpEPoeJJbosWLcpcu+WWWyolxAwAQLpq1u233z55Qa3QxIkTw4477hhee+21ZeZOmzYtOU148ODBmWutWrUKZ599dpFrq1kBAFZ9FVmvxuDDlVdeuUwgIl7LPpym0OTJk8Phhx8eHnzwwZw1rr766iLXV68CAKRDPNAluy6LDj300JxAxIrYaaedwmGHHZYZjxo1Kuy3335J/bj0wTXXXHNNuOSSSzLX1llnnXD55ZcXu3bz5s1z9hnr4Vjzjh07dpm5//rXv5KDagrF8EUMcRRHvQoAkB5VtWa95557ctZYe+21kyBw7EZcHmK9ecMNN2TGCxcuDAcddFDOOwWFYkg41rO//PJL5lrsWNygQYNy2QsAALDiqhXE/+sHYCX49ttvQ4sWLTLj+OBl6RfFijJ37tyw7bbbJieOFapfv35yAu9mm22WvFT2+eefhzfffDPndLTWrVsnX7LFBymVtff4/8TGMEb8Yi/bbrvtFrbbbruwePHi5AHKhx9+mPP7888/PzmBDQCAlSutNeuCBQuSLyqzQxmFnSPil46NGjUK48aNCy+//HJOl7f4Mtrw4cND+/bti11bzQoAUHWktV6NgYmlO27EWjQGiVu2bJmsOWbMmGT9+LJZobp16yaH3Oyyyy7Frq1eBQCofK+++mrYd999y229ol5ViofVxA5oEyZMyFyLAYgDDjggqVlj0DY+H500aVLm99WrVw/PPPNMErIt7fnq7rvvHv73v/9lrtWoUSOpV7fccsswZ86cMHTo0Jx6OerXr1/o06dPqX8X9SoAQOWrijVr/IxmzZotEyheXgMGDMg53CbbWWedldS32eIz406dOiW18QcffJC8W5AtHuz4n//8p1z2BgAAlA9hYCD1L6oVdj+LD2qKOp23KJ07d04eQjRu3DhU9t7jyb49e/Zc5su/4pxxxhnJQxcnAAMArHxprlljXXnyySeHhx9+OK/5TZs2DU8//XQSFs5nbTUrAED6pbVejWHfyy67LFx//fVFviRXlI033jipV7fffvtS56pXAQAq19lnnx3uvPPOcluvuJox1qyxE9lXX31V6hqxa+99990XevXqlddnzpo1K+y///5hxIgRpc6NgY3rrrsuXHzxxXmtrV4FAKh8VbFmHT16dOjQoUMoLyWFgePfJx50c9ddd+W1Vvfu3cPjjz9ebh2KAQCA8lG9nNYBqFDx9LN48till16adD0rzlZbbZV0oHj99dfLLQi8ouIDnUGDBoWBAwcmp78VZ+utt07m/eMf//ClHwBAFVTRNWusKwvv23XXXZMX0oqy1lprhXPPPTd8+umneQWBC9dWswIArNoqsl4tDEuMGjUqeUmsVq1axc7dYIMNwtVXX510Cs4nCBypVwEAKld257OKrlk//vjj5KCZ4mrRWOd17do1qW3zDQJHa6+9dnjrrbfC7bffHjbaaKNi5+2yyy7hzTffzDsIHKlXAQAqX1WsWVfWngv31L9//6Rz8TbbbFPsvFatWiUB5tjNWBAYAADSR2dgoMqJp+rGl8piuGHGjBnJF2ux69kOO+xQ4hdraRH3HU90mzZtWnLa2vrrr5/sfYsttqjsrQEAUIVq1lhPvv3222HKlClJV4uGDRuGNm3ahJ133nmFv5RTswIArNoqul6dO3duUqvGTsaF66+77rrJS2bt2rVb4eCDehUAYNX3+++/JzXluHHjwk8//ZQ882zevHno1KlTUruuiFhDxno4HlATa8qaNWuGDTfcMHTs2DG0aNFihfeuXgUAWD1UZM1a0WIQeeTIkcn7BosXL06e32677bbJATYOrgEAgPQSBgYAAAAAAAAAAAAAAAAAgJSqXtkbAAAAAAAAAAAAAAAAAAAAiiYMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAAAAAAAAAAAAAKSUMDAAAAAAAwCrtkksuCdWqVcv58/rrr6/wuvfcc0/OmrVr1w6jR48ulz0DAAAAAAAAABSqVlBQUJAZAQAAAAAAwCpm4cKFoX379mHs2LGZay1atAiffvppaNCgwXKtOXHixNC2bdswe/bszLVrrrkm/O1vfyuXPQMAAAAAAAAAFNIZGAAAAAAAgFVanTp1woABA0KNGjUy17755ptw6aWXLveap556ak4QeMcdd0w6EAMAAAAAAAAAlDdhYAAAAAAAAFZ5Max73nnn5Vzr169fGDFiRJnXeuihh8JLL72UGdevXz88/PDDOWFjAAAAAAAAAIDyUq2goKCg3FYDAAAAAACAlFqwYEFo3759+OKLLzLXtthiizB69Oike3A+pk6dGtq0aRNmzpyZEyru06dPhewZAAAAAAAAAEBnYAAAAAAAAFYLdevWDQ888ECoXv3/viIbO3ZsuOaaa/Je4/TTT88JAnfp0iWcccYZ5b5XAAAAAAAAAIBCOgMDAAAAAACwWrngggvCLbfckhnXrFkzvP/++2Hrrbcu8b4nn3wyHHHEEZlxw4YNw6effho23njjCt0vAAAAAAAAALB6EwYGAAAAAABgtbJgwYIk+PvVV19lrnXo0CGMHDkyCQYX5eeffw5t2rQJP/74Y+bawIEDw7HHHrtS9gwAAAAAAAAArL6qV/YGAAAAAAAAYGWqW7duGDBgQKhe/f++Kvvwww/D3//+92LvOeuss3KCwIcddlipQeARI0aEv/zlL2G77bYLG2ywQahdu3ZYb731wjbbbBPOOeec8NZbby3X/ufOnRsee+yx0Lt37yTEHDsT169fP9SqVSuss846oV27duH4448PTz/9dFiyZEmp61WrVi3zZ8iQIcm1MWPGhEMOOSQ0atQoWTOGp88///zwySefLNeeAQAAAAAAAIDlpzMwAAAAAAAAq6Xzzjsv3HbbbTkh4c8//zy0aNEiZ95LL70Uunbtmhmvv/764bPPPgtNmjQpct3Ycfjss88OL7/8cql72HfffUP//v1Dq1atSp37+++/h5tuuinceuutYfr06SEff/zjH8ODDz4YOnbsWOycGAIu9Nprr4XGjRuH3XbbLcyZM2eZudddd13461//mtdnAwAAAAAAAADlQxgYAAAAAACA1dL8+fOTjrfjxo3LXDvwwAPDc889l9OFt23btuG7777LXIu/j/OK8sYbbyRdg2fOnJn3PmKo+Nlnnw0777xzsXMWLFgQjjjiiDB48OBQVjHk/M477yRdhEsLA8e/W+wAHAPNRYlh6S222KLMewAAAAAAAAAAll/1FbgXAAAAAAAAqqx69eqFBx54IFSv/n9fmT3//PPJn0KXX355ThD4pJNOKjYIHLsFx99lB4F32mmn8Nhjj4XJkyeHhQsXhqlTp4ann3467LXXXpk5sctv7Dz89ddfF7vXK6+8MicI3LRp06RDcPzM2MH3t99+CzNmzAhvv/12OOecc0KdOnVygsSxC3I+Yqfk4oLArVu3FgQGAAAAAAAAgEqgMzAAAAAAAACrtRieveOOOzLjli1bhjFjxoTx48eH9u3bJ0HbqEWLFuHjjz8Oa6655jJrLF68OGy11Vbhiy++yAnwxjBxdufdbLfffnsS0i38um6HHXYII0eOXGbe999/HzbddNPkM6KNN944/O9//0sCwcUZNWpU2HXXXZMAchT3MGnSpLDhhhsuM7eo/cUuwjfeeGMSZv7ll1/CkCFDks8/+eSTi/1MAAAAAAAAAKBi6AwMAAAAAADAaq1v375J2LZQ7NB7ww03hD59+mSCwLF78IMPPlhkEDh6/PHHc4LAvXv3DldccUWxQeDCEPL555+fGceA78svv7zMvP/+97+ZIHB08803lxgEjrbffvvQo0ePzDgGjj/99NOQj7Zt24Y333wzdOnSJayxxhpJ+PiEE04QBAYAAAAAAACASiIMDAAAAAAAwGqtfv364f77788J7l5zzTVh2LBhmfG5554bdtttt2LX6NevX+bnunXrhmuvvTavz/7rX/+azC901113LTNn/fXXD7169QqdOnUKrVu3Docddlhea8fuvtlmzpyZ130xxFxc6BkAAAAAAAAAWPmEgQEAAAAAAFjtxaBv7ARcaMmSJTmdcq+77rpi7501a1b44IMPMuNddtklNG7cOK/PXWeddcKuu+6aGQ8fPjzns6Ojjz46PPzww+Htt98OY8eODbVq1cpr7aUDvYsWLSr1ntgBed99981rfQAAAAAAAABg5RAGBgAAAAAAgBDCDTfcEFq2bJlzLQZvBw4cGOrUqVPsfe+9915OgLdFixZl+tytt946J1gcA7/LI+5hwoQJ4amnngrnnXde6Nu3b87vCwoKSl2jTZs2Ya211lquzwcAAAAAAAAAKkbNCloXAAAAAAAAqpT69euHCy+8MPTu3Ttz7bDDDgvt27cv8b5JkybljP/1r38lf5bXlClTkm7ExVmwYEEYOXJk+OSTT8K4cePC119/Hb799tvkv/Pnzy/2vnzCwBtttNFy7xsAAAAAAAAAqBjCwAAAAAAAAPD/Ld0BuKSOwIVmzpxZrnuYMWNGkdcnTpwYrr766vDEE0+E2bNnl7pOzZo1w2+//Vamz27UqFGZ5gMAAAAAAAAAFU8YGAAAAAAAAFbA4sWLy3W9orr7Pv3006FXr15h3rx5xd63zjrrJF2MO3bsGPbaa6/w1Vdf5XQ5zkft2rWXa88AAAAAAAAAQMURBgYAAAAAAIAVEEO42e66665w2mmnldv67777bujZs2f4/fffM9eaNm0aunbtGrbffvvQpk2bsPnmm4f11lsv574YBgYAAAAAAAAAqj5hYAAAAAAAAFgBS4dwf/rpp3Jd/8wzz8wJAp999tnhxhtvDHXq1Cnxvl9//bVc9wEAAAAAAAAAVA5hYAAAAAAAAFgBO+ywQ8545MiRZbr/m2++CdWrVw8bb7xxqFGjRs7vxowZEz788MPMeLvttgu33357XuuOGzcuZ1xQUFCmfQEAAAAAAAAA6VC9sjcAAAAAAAAAVVkM8W666aaZ8dChQ8PUqVPzunfJkiVhn332CZtssknS6bdFixZh0qRJmd9/+eWXOfM7d+6c17qLFi0KL730Us617O7CAAAAAAAAAEDVIQwMAAAAAAAAK+jUU0/N/LxgwYJw4YUX5nVf//79w/jx4zNh3YYNGybh4uK6+U6fPj2vdePnZ4eKCwPCAAAAAAAAAEDVIwwMAAAAAAAA5RAGXm+99TLjgQMHhgsuuCDp/Fuc2Lk3zsl2+eWX54zbtGmTM37yySfDuHHjil1z8eLFyZp33HHHMr+bP39+Xn8XAAAAAAAAACBdhIEBAAAAAABgBa255prhscceCzVq1Mhcu+WWW8I222wTBgwYEL7//vukM+8PP/wQhg4dGg4//PBw4IEH5nTr7dmzZzjkkENy1t1iiy1Chw4dMuO5c+eGTp06JR2Fv/vuu/Dbb7+FGTNmhI8//jjceOONoW3btsnnFmXWrFkV8ncHAAAAAAAAACpWzQpeHwAAAAAAAFYLe+65Z/j3v/8d/vSnP4UFCxYk1z799NNw4oknlnpvly5dwgMPPFDk7+6+++6wxx57ZDr7/vTTT6FPnz7Jn5J069YtPP/885nuxF9//fVy/K0AAAAAAAAAgMqmMzAAAAAAAACUkyOPPDK8/fbbSffefNSpUydcfvnl4cUXXwwNGjQocs4OO+yQhHo32GCDvNZs0qRJuPfee8Ozzz4bNttss8z1N998MxQUFOT5NwEAAAAAAAAA0kJnYAAAAAAAAChH2267bRIIHjZsWHjuueeS/06aNCnMmDEj1KxZMzRu3DhstdVWSSfhY489Nqy33nqlrhnnfvnll+Hhhx9OgsGffPJJsl4M96611lqhWbNmoV27dqFz586hR48emWDxYYcdFvr27Zv8PHny5OTegw46qML/DQAAAAAAAACA8lOtwPHfAAAAAAAAAAAAAAAAAACQStUrewMAAAAAAAAAAAAAAAAAAEDRhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACClhIEBAAAAAAAAAAAAAAAAACCk0/8DPvCbJoXQjpYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(14, 6))\n", "bars = ax.bar(df[\"year\"], df[\"dev\"], color=colors)\n", "\n", "sm = cm.ScalarMappable(cmap=cmap, norm=norm)\n", "sm.set_array(df[\"dev\"].values)\n", "\n", "cbar = fig.colorbar(sm, ax=ax)\n", "cbar.set_label(\"Deviation\")\n", "\n", "ax.set_xlabel(\"Year\")\n", "ax.set_ylabel(\"Deviation\")\n", "ax.set_title(\"Temperature change in India\")\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> This plot shows the **yearly deviation in average temperature** across India from the long-term mean (1941–2024). \n", "> Bars above zero indicate **warmer-than-average years**, while bars below zero indicate **cooler-than-average years**. \n", "> The color gradient reinforces this — with **warm tones** for hotter years and **cool tones** for colder years." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion\n", "\n", "This example demonstrates how `varunayan` can be used to easily access and visualize historical climate data for a specific region — in this case, India's average temperature from 1941 to 2024.\n", "The visualization clearly illustrates how India’s **average annual temperature** has changed over the last **80+ years**.\n", "\n", "- There is a noticeable **upward shift** in temperature deviations over time, with recent decades showing **more frequent and intense warmer-than-average years**.\n", "- The use of color gradients helps visually track how the **climate signal has intensified** over time.\n", "\n", "By combining climate data extracted using `varunayan` with simple processing and visualization, we gain a compelling and accessible picture of India's changing climate — one that is both data-driven and intuitive.\n" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.12" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }