Examples ======== This section provides comprehensive examples of using varunayan for various climate data analysis tasks. Monsoon Analysis ---------------- Download and analyze monsoon precipitation patterns over India. Python API ~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_geojson # Download monsoon precipitation data era5ify_geojson( request_id="india_monsoon_2020", variables=["total_precipitation", "2m_temperature"], start_date="2020-06-01", end_date="2020-09-30", json_file="india_states.geojson", dist_features=["state_name"], frequency="daily" ) Command Line ~~~~~~~~~~~~ .. code-block:: bash varunayan geojson --request-id "india_monsoon_2020" \ --variables "total_precipitation,2m_temperature" \ --start "2020-06-01" --end "2020-09-30" \ --geojson "india_states.geojson" \ --dist-features "state_name" \ --freq "daily" Hurricane/Cyclone Analysis -------------------------- Analyze atmospheric conditions during extreme weather events. Pressure Level Winds ~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_bbox # Download multi-level wind data during Cyclone Amphan era5ify_bbox( request_id="amphan_cyclone", variables=["u_component_of_wind", "v_component_of_wind", "temperature"], start_date="2020-05-18", end_date="2020-05-21", north=25.0, south=15.0, east=95.0, west=85.0, dataset_type="pressure", pressure_levels=["1000", "925", "850", "700", "500"], frequency="hourly", resolution=0.1 ) Surface Conditions ~~~~~~~~~~~~~~~~~~ .. code-block:: bash # Surface pressure and wind patterns varunayan bbox --request-id "amphan_surface" \ --variables "mean_sea_level_pressure,10m_u_component_of_wind,10m_v_component_of_wind" \ --start "2020-05-18" --end "2020-05-21" \ --north 25.0 --south 15.0 --east 95.0 --west 85.0 \ --freq "hourly" --res 0.1 Urban Heat Island Study ----------------------- Compare temperatures between urban and rural areas. City vs Surroundings ~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_point # Urban center (Mumbai) era5ify_point( request_id="mumbai_urban", variables=["2m_temperature", "surface_temperature"], start_date="2020-03-01", end_date="2020-05-31", latitude=19.0760, longitude=72.8777, frequency="hourly" ) # Rural area nearby era5ify_point( request_id="mumbai_rural", variables=["2m_temperature", "surface_temperature"], start_date="2020-03-01", end_date="2020-05-31", latitude=19.2, longitude=73.2, frequency="hourly" ) Agricultural Applications ------------------------- Climate data for crop monitoring and yield prediction. Growing Season Analysis ~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_geojson # Download data for agricultural regions era5ify_geojson( request_id="punjab_agriculture", variables=[ "2m_temperature", "total_precipitation", "2m_relative_humidity", "surface_solar_radiation_downwards" ], start_date="2020-04-01", # Kharif season start end_date="2020-10-31", # Kharif season end json_file="punjab_districts.geojson", dist_features=["district_name"], frequency="daily" ) Frost Risk Assessment ~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash # Daily minimum temperatures for winter wheat varunayan geojson --request-id "wheat_frost_risk" \ --variables "2m_temperature,2m_dewpoint_temperature" \ --start "2019-12-01" --end "2020-03-31" \ --geojson "wheat_growing_regions.geojson" \ --dist-features "region_name" \ --freq "daily" Renewable Energy Assessment --------------------------- Solar and wind resource evaluation. Solar Resource Mapping ~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_bbox # Solar radiation data for Rajasthan (major solar potential) era5ify_bbox( request_id="rajasthan_solar", variables=[ "surface_solar_radiation_downwards", "surface_net_solar_radiation", "total_cloud_cover" ], start_date="2019-01-01", end_date="2021-12-31", north=30.2, south=23.0, east=78.3, west=69.3, frequency="monthly" ) Wind Energy Assessment ~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash # Wind speeds at multiple heights for wind farm planning varunayan bbox --request-id "gujarat_wind" \ --variables "10m_u_component_of_wind,10m_v_component_of_wind,100m_u_component_of_wind,100m_v_component_of_wind" \ --start "2020-01-01" --end "2020-12-31" \ --north 24.7 --south 20.1 --east 74.5 --west 68.1 \ --freq "daily" Climate Change Studies ---------------------- Long-term temperature and precipitation trends. Temperature Trends ~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_geojson # Multi-decade temperature analysis for year in range(1990, 2021, 5): era5ify_geojson( request_id=f"india_temp_{year}_{year+4}", variables=["2m_temperature"], start_date=f"{year}-01-01", end_date=f"{year+4}-12-31", json_file="india_climate_zones.geojson", dist_features=["climate_zone"], frequency="yearly" ) Extreme Events ~~~~~~~~~~~~~~ .. code-block:: bash # Heat wave analysis varunayan bbox --request-id "delhi_heatwave_2019" \ --variables "2m_temperature,maximum_2m_temperature_since_previous_post_processing" \ --start "2019-05-01" --end "2019-06-30" \ --north 29.0 --south 28.0 --east 77.5 --west 76.5 \ --freq "daily" Hydrology and Water Resources ----------------------------- Precipitation and evaporation analysis for water management. Catchment Analysis ~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_geojson # Water balance components for river basin era5ify_geojson( request_id="ganga_basin_hydro", variables=[ "total_precipitation", "total_evaporation", "runoff", "soil_temperature_level_1" ], start_date="2020-01-01", end_date="2020-12-31", json_file="ganga_basin.geojson", frequency="monthly" ) Drought Monitoring ~~~~~~~~~~~~~~~~~~ .. code-block:: bash # Precipitation deficit analysis varunayan geojson --request-id "maharashtra_drought_2019" \ --variables "total_precipitation,soil_water_content,2m_temperature" \ --start "2019-01-01" --end "2019-12-31" \ --geojson "maharashtra_districts.geojson" \ --dist-features "district_name" \ --freq "monthly" Aviation and Transport ---------------------- Weather data for aviation route planning and safety. Upper Air Analysis ~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_bbox # Flight level weather conditions era5ify_bbox( request_id="flight_route_weather", variables=[ "temperature", "u_component_of_wind", "v_component_of_wind", "relative_humidity" ], start_date="2020-12-01", end_date="2020-12-31", north=35.0, south=8.0, east=95.0, west=65.0, # India flight routes dataset_type="pressure", pressure_levels=["300", "250", "200"], # Flight levels frequency="hourly" ) Turbulence Analysis ~~~~~~~~~~~~~~~~~~~ .. code-block:: bash # Wind shear and turbulence indicators varunayan point --request-id "delhi_airport_winds" \ --variables "u_component_of_wind,v_component_of_wind,temperature" \ --start "2020-01-01" --end "2020-01-31" \ --lat 28.5562 --lon 77.1000 \ --dataset-type "pressure" \ --pressure-levels "1000,925,850,700,500,300,250,200" \ --freq "hourly" High-Resolution Local Studies ----------------------------- Detailed analysis for small geographical areas. Microclimate Analysis ~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from varunayan import era5ify_bbox # High-resolution urban microclimate era5ify_bbox( request_id="bangalore_microclimate", variables=[ "2m_temperature", "10m_wind_speed", "2m_relative_humidity", "surface_solar_radiation_downwards" ], start_date="2020-06-01", end_date="2020-06-30", north=13.1, south=12.8, east=77.8, west=77.4, # Bangalore city resolution=0.1, # High resolution frequency="hourly" ) Coastal Weather ~~~~~~~~~~~~~~~ .. code-block:: bash # Coastal wind patterns for marine applications varunayan bbox --request-id "mumbai_coastal" \ --variables "10m_u_component_of_wind,10m_v_component_of_wind,mean_sea_level_pressure,significant_height_of_combined_wind_waves_and_swell" \ --start "2020-06-01" --end "2020-09-30" \ --north 19.3 --south 18.9 --east 72.9 --west 72.7 \ --res 0.1 --freq "hourly" Data Processing Tips -------------------- Handling Large Datasets ~~~~~~~~~~~~~~~~~~~~~~~~ For large temporal or spatial extents, varunayan automatically chunks requests: .. code-block:: python # This will be automatically chunked into smaller requests era5ify_bbox( request_id="large_dataset", variables=["2m_temperature"], start_date="2000-01-01", # 20+ years of data end_date="2020-12-31", north=50.0, south=0.0, east=100.0, west=50.0, frequency="daily" ) Multiple Variables ~~~~~~~~~~~~~~~~~~ Download different variable types in separate requests for efficiency: .. code-block:: bash # Surface variables varunayan bbox --request-id "surface_vars" \ --variables "2m_temperature,total_precipitation,10m_wind_speed" \ --start "2020-01-01" --end "2020-12-31" \ --north 30 --south 20 --east 80 --west 70 # Pressure level variables (separate request) varunayan bbox --request-id "pressure_vars" \ --variables "temperature,u_component_of_wind,v_component_of_wind" \ --start "2020-01-01" --end "2020-12-31" \ --north 30 --south 20 --east 80 --west 70 \ --dataset-type "pressure" --pressure-levels "850,500,200"